[image: image1.png]
Patch Sequencing in Windows Installer version 3.0

October 28, 2004
Abstract:

This white paper describes the patch sequencing functionality in Microsoft® Windows Installer version 3.0. Beginning with the theory of patch sequencing in Windows Installer version 3.0 and finishing with specific sequencing sample techniques for controlling the lifetime of patches through supersedence relationships, this document identifies the concepts of patch migration and compatibility, advanced sequencing scenarios, and integration of sequencing with other features of the Windows Installer.

This document is targeted at installation developers or Setup authors responsible for the design, creation, and management of Windows Installer patches (.msp files). Familiarity with the basic principles of the Windows Installer and Windows Installer patches is assumed. Sample patch metadata tables in this document may be authored by using the Orca tool in the software development kit for Windows Installer version 3.0. Other authoring tools may require different authoring steps or may provide access to a subset of the described functionality.
The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This document is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

The example companies, organizations, products, people and events depicted herein are fictitious. No association with any real company, organization, product, person or event is intended or should be inferred.

© 2004 Microsoft Corporation. All rights reserved.

Microsoft and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries/regions.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

Contents

Contents
2
Table of Figures
4
Overview
5
The Theory of Patch Sequencing
6
Chronological Ordering
6
Logical Ordering
6
Small Updates, Minor Upgrades, and Major Upgrades
7
Using the ProductVersion property when creating upgrades
8
Patch Families
9
Family Sequences
10
Patch Lifetime Management
11
Sequencing Fundamentals
12
The Sequencing Process
12
Defining Patch Families
13
When to Define Patch Families
13
Family Identifiers
14
Scope of Patch Families
14
Guidelines for Patch Families
14
The MsiPatchSequence Table
15
PatchFamily
16
ProductCode
16
Sequence
16
Attributes
17
Editing the MsiPatchSequence Table
17
Best Practices
17
Supersedence and Obsolescence
19
Defining Supersedence Relationships
19
Supersedence vs. Obsolescence
19
Patch Type
20
Targeting
20
Scope
20
Conditional
20
Chaining
20
Forced Removal
21
Revert Changes
21
Supersedence, Obsolescence, and Patch Lifetimes
21
Applying and Removing Superseded and Obsolete Patches
22
Migrating to Supersedence
22
Using Patch Sequencing Data
24
Creating Small Updates
24
Releasing the First Update
24
Releasing a Second Small Update
25
Installing the Sample Small Updates with Windows Installer Version 3.0
25
Releasing a Service Pack
27
Releasing the First Service Pack
27
Releasing a Third Small Update
28
Installing the New Sample Updates with Windows Installer version 3.0
28
Migration and Compatibility
32
Integration with Unsequenced Patches
32
Sequencing Behavior
32
Lifetime Management
32
Migration Options
32
Installing Sequenced Patches with Previous Versions of Windows Installer
33
Advanced Sequencing
35
Backporting an Existing Fix
35
Multi-Target Patches
36
Targeting Multiple Product Versions
36
Combining Multi-Target and Backported Fixes
38
Targeting Multiple Product SKUs
38
Multi-Family Patches
40
Sequencing Multi-Family Patches
40
Dependency Cycles
41
Conditional Sequence Data
45
Conditional Family Membership
45
Changing Family Systems
46
Adding Additional Families
46
Dropping Families
48
Glossary
50
 Table of Figures

Figure 1 Ordering patches based on the ProductVersion property
8
Figure 2 Ordering small updates based on the values of the ProductVersion property
9
Figure 3 Grouping related patches into patch families
10
Figure 4 Sample patch for backporting a fix included in a later product version
35
Figure 5 A patch with multiple target images and updated images based on versions
37
Figure 6 Removal of a service pack triggering the retarget of a small update
38
Figure 7 A patch with multiple targets and updated images based on SKU
39
Figure 8 Consolidating sequences across multiple patch families
40
Figure 9 Addition of a new patch, changing the application order for existing patches
41
Figure 10 Multi-family patches with no valid sequence: a dependency cycle
42
Figure 11 An updated patch scenario with no dependency cycle
43
Figure 12 Supersedence in Multiple Family Cases
43

Figure 13 A patch superseded in one family but not in others
44
Figure 14 A multi-family patch superseded in all patch families
44
Figure 15 Servicing scenario for a product family with independent small updates
45
Figure 16 A product family serviced by a patch with conditional family membership
46
Figure 17 Adding a family to an existing servicing model
47
Figure 18 Adding a family to an existing servicing model when files in all new families have been previously updated
48
Figure 19 Dropping a patch family from an existing servicing model
49
Overview

Windows Installer version 3.0 enables patch authors to provide explicit instructions to the installation process about the best order of applying a set of patches. These instructions are provided by declaring inside each patch a relationship to other patches that target the same product or functionality. The patch author’s ability to define relationships between patches and Windows Installer’s ability to interpret these instructions when evaluating a set of related patches result in a powerful and flexible set of behaviors, collectively called “Patch Sequencing.”

In many cases, the authoring environment or patch creation tools used to create Windows Installer patches will automatically include default sequencing instructions for most common servicing scenarios. However, in some cases the patch author may want to customize, extend, or override the default instructions. This white paper will discuss the theory and practice of Windows Installer version 3.0 patch sequencing behavior, new sequencing metadata, and examples of both common and uncommon sequencing scenarios.

After reading this document developers and patch authors will be able to:

· Understand and interpret sequence data stored in a patch.

· Determine when a product has outgrown the default sequencing behavior provided by a patch authoring tool.

· Design a servicing model for a product or set of related products.

· Manually create sequencing data for uncommon patch scenarios.

· Migrate an existing product servicing plan to incorporate a new sequencing model.

The Theory of Patch Sequencing

Patch sequencing is a patching technology in Windows Installer version 3.0 that enables patch authors to control the logical result of applying a set of patches to a target product, regardless of the order in which patches are actually applied to the target product. With patch sequencing data, Windows Installer will know the relationship between a set of patches so that applying Service Pack 1 of a product after Service Pack 2 is already applied will register the patch, but will not overwrite the Service Pack 2 files.

Patch sequencing enables the patch author to group related patches into patch families and declare the sequencing relationships between patches in each family and between patch families. Windows Installer uses the family declarations to compute the best state for the target product given the set of patches available. When combined with the optimized baseline patching model used by Windows Installer version 3.0, some patches or file updates may be ignored because they are irrelevant based on the presence of other patches, yet still tracked so that the uninstallation of patches will not leave the product in an undesirable state.
Chronological Ordering

The patch sequencing functionality of Windows Installer version 3.0 is designed to address a number of limitations in earlier versions of Windows Installer.

Before the existence of Windows Installer’s sequencing logic, patches were applied to products in the order in which they appeared on the destination computer. This chronological ordering of patches was sufficient for only the most basic patching scenarios. A patch could easily install the incorrect version of a file if the user or system administrator instructed Windows Installer to apply a previous patch for the product after a more recent patch had already been applied.
Patch authors commonly attempted to enforce a form of sequencing behavior on patches in Windows Installer version 2.0 by using the transform validation flags to limit the set of patch targets based on the ProductCode and ProductVersion properties. While effective in blocking incorrect patch application in some scenarios, this technique was useful only if the patch was a minor update that changed the value of the ProductVersion property. This approach also provided little functionality for creating flexible sets of patches that could apply a fix to several different versions of a product, or patches that could maintain a valid product state as other (perhaps unrelated) patches were applied and removed from the product.

Logical Ordering

Because of the sequencing logic in Windows Installer version 3.0, patch authors have much more control over how patches are applied to a product. Instead of relying on the administrator or end user to apply patches in the correct order, patch authors can explicitly specify an application sequence for a set of patches. This logical ordering for patches is defined by the progression of the product from version to version and the explicit intent of the author. It is not influenced by the order in which the destination computer encounters the patches.

Using the logical order for patch application enables Windows Installer to determine that a particular small update must happen at a particular point in the patch order (for example, between the patch for version 1.1 and the patch for version 1.2) and not whenever the patch is first encountered. Defining a logical ordering for patches also greatly simplifies the patch creation process, as authors can now confidently generate product updates from a smaller set of earlier product states (called baselines) instead of considering every possible combination of patches that could exist on the destination computer. Windows Installer combines the logical patch order with the contents of each patch to ensure that the correct product resources are installed even when patches are applied in different chronological orders.

Small Updates, Minor Upgrades, and Major Upgrades

Patch sequencing in Windows Installer is based on the rough classification of patches into three distinct categories: Small Updates, Minor Upgrades, and Major Upgrades.

Small Updates
A small update (also called a QFE or hot fix) is a patch that does not change the values of the ProductCode and ProductVersion properties of the product. These patches are created to make small changes to the product and usually update a limited number of the product’s files.
Minor Upgrades
Minor upgrades (of which Service Packs are a type) are patches that provide significant updates to the product. These patches always increment the value of the ProductVersion property but never change the ProductCode property. Minor upgrades usually update many files in the product and incorporate the changes made by all previous small updates for the product.

Minor upgrades may be cumulative or non-cumulative. Cumulative patches incorporate the changes made by all previous minor upgrades and target several versions of the product, including the first version of the product. Non-cumulative patches do not include changes made by previous minor upgrades and only target the most recent version of the product. Some patches may combine the two behaviors, incorporating changes from minor upgrades released after a certain date or version, but not previous upgrades.

Major Upgrades
A major upgrade is a patch that changes the ProductCode property of the product and, therefore, may change the ProductVersion property if desired. Major upgrades may not be uninstalled or sequenced by Windows Installer version 3.0 sequencing behavior, however, Windows Installer 3.0 can apply major upgrade patches from version 2.0 that do not contain any sequencing information. Once a patch containing sequencing information has been applied to a product, major upgrade patches can no longer be applied to that product. (The sequencing of major upgrades is defined only by the targeting information of the patch.) In general, releasing a new .msi file that upgrades a product by using the RemoveExistingProducts action is preferred over using a patch file for a major upgrade.

Using the ProductVersion property when creating upgrades

Minor upgrades (which change the value of the ProductVersion property but not the value of the ProductCode property) form the framework for the sequencing logic in Windows Installer. When Windows Installer receives a set of minor upgrades to apply, the new value of the ProductVersion property for each patch is examined and the set of resultant versions will generate (with few exceptions) a single optimal order of application for the patches.

[image: image2.emf]Increasing Version

1.0

1.0 to 1.3

1.2 to 1.3

1.0 to 1.2

1.1 to 1.2

1.0 to 1.1

SP1.msp

MSI Updates

Targeting Data

MetaData

Payload

SP2.msp

Targeting Data

MetaData

MSI Updates

Payload

SP3.msp

MetaData

Targeting Data

MSI Updates

Payload

Product MSI

Property Table

File Data

Figure 1 Ordering patches based on the ProductVersion property

Adding small updates to the set of patches for a product does not change this fundamental order defined by the value of the ProductVersion property. These new patches by definition do not change the ProductVersion property when applied to a product, however, the value of the ProductVersion property is still critical in determining the applicability of small updates just as it is a key aspect of minor upgrade applicability checks.

Small updates include as part of their target validation data a declaration of the ProductVersion property to which they can apply. This version targeting data provides the first rough order when determining the optimal order of application for small updates.

[image: image3.emf]Increasing Version

1.0

QFE4.msp

MSI Updates

Targeting Data

MetaData

Payload

Targets:

v1.1

1.3

1.21.1

QFE1QFE7QFE6QFE5

QFE4QFE3

QFE2QFE8

QFE9.msp

MSI Updates

Targeting Data

MetaData

Payload

Targets:

v1.3

QFE9

Figure 2 Ordering small updates based on the values of the ProductVersion property

Unfortunately, when multiple small updates apply to the same version of the product, the value of the ProductVersion property is the same for all of the small updates. In the example above, QFE1, QFE2, and QFE4 all apply to version 1.1 of the product, but there is no way to determine the order to apply those patches. Therefore, the value of the ProductVersion property does not provide enough information about the patches for Windows Installer to determine the best order of application. Given a set of small updates (or a combination of small updates and minor upgrades), it is not possible to define an order of application unambiguously for the patches without some data about:

· Which patches update similar functionality.

· What restrictions exist for the application order of related patches.

· When the changes made by one patch are included in another.
· What to do when patches are uninstalled.

This information is all provided by the sequencing metadata.

Patch Families

A patch family provides the high-level grouping logic for a sequencing scenario, enabling the author to provide explicit instructions that define the role of a particular patch in the servicing model for the target product. Furthermore, a patch family defines a set of patches that update the same, similar, or related functionality of the target product, which are each intended to apply in a specific order, relative to other patches in the same family. A family indicates which patches are related to each other and which patches are not.

In most cases, the patch family for a product contains all patches that apply to the product. Given the previous definition, the patches that target a particular product update related functionality of the product, and are intended to apply in a specific order, relative to other patches that target the product. This “single-product/single-family” model is often capable of meeting the servicing needs of a product.

In some cases, the patch author may decide to subdivide the set of patches for a product into several smaller families (or alternatively, create families that span multiple products) to manage more complicated sequencing cases not encountered by most products. However, the patch sequencing behavior in Windows Installer version 3.0 is designed to manage most product-patching cases with only a single patch family.

[image: image4.emf]QFE5

QFE2

QFE8

QFE6

QFE4

QFE1

QFE3

QFE7

Family A

Family B

Target

Product

Figure 3 Grouping related patches into patch families
Once a patch has been assigned as a member of a patch family (or multiple patch families), the patch author can

· Declare sequencing relationships between related patches.

· Prevent unrelated patches from unnecessarily interfering with each other.

· Provide general information about which small updates are included in minor upgrades so that previous patches can be replaced by more recent patches.

Patch authors familiar with the .pcp file format for patch creation must be careful not to confuse the patch family information with the data stored in the ImageFamilies table of the .pcp file. ImageFamily data encoded in the .pcp file acts as an aid to organizing and managing administrative images used during the patch creation process. It is not an actual component of the patch metadata.
Family Sequences

Sequence numbers provide the ordering information for a family, enabling the author to define the ordering dependencies within a patch family. Ordering relationships are defined by a numeric value assigned to a patch, indicating its sequence. Patches are sorted by this numeric value (smaller numbers are sequenced before larger numbers) to determine the appropriate order of application.

Sequence numbers in a family never override the actual targeting information of a patch. For example, a patch targeted at version 1.2 of a product will always be applied after a patch that transforms the product to version 1.2 and before a patch that transforms the product to version 1.3 (or higher). Sequence numbers apply only within a specific target version.
Usually, the sequence numbers in a family will increase over time (as later patches must almost always be applied after earlier patches).
Patch Lifetime Management

In addition to the explicit information about patch ordering provided in the patch metadata, the Windows Installer version 3.0 sequencing logic also enables the patch author to specify flexible replacement logic and lifetime management data for patches. Before Windows Installer version 3.0, the only way to remove a patch was to declare it obsolete by specifying the value of the PatchCode property in the SummaryInformation property of another patch. Although powerful, this system required patch authors to know the entire set of patches to remove before a new patch could be authored, and made it difficult to create patches for earlier versions of a product.

Although Windows Installer still supports the explicit removal of obsolete patches through a direct reference to the PatchCode property for patches that do not utilize the new sequencing behavior, obsolescence is limited by its defined order of application.
Sequencing Fundamentals

Most patch authors will never need to create sequencing data manually, but even authors that rely on a patch-authoring tool for sequencing may be interested in the fundamental logic behind the Windows Installer patch sequencing. An understanding of basic sequencing metadata and of the core sequencing scenarios may be helpful to you when you analyze existing patches or troubleshoot problems.
The Sequencing Process

When sequencing patches with sequencing data, Windows Installer version 3.0 does the following:

1. Creates a framework of the values of the ProductVersion property.
As described earlier, minor updates (which change the value of the ProductVersion property) create the framework for sequencing patches. The value of the ProductVersion property created by each patch indicates the logical ordering of the patch relative to other minor updates, so the first step in sequencing a set of patches is to examine these patches and sort them based on the value of the ProductVersion property that each creates.

2. Groups patches by the ProductVersion property.
All remaining unsorted patches do not change the value of the ProductVersion property, and are thus small updates. Each small update indicates in its targeting data the values of the ProductVersion property that enables the patch to apply. This targeting data provides the next level of sequencing for the patches. The small updates are examined and grouped by their target ProductVersion property. Small updates that apply to more than one value of the ProductVersion property are assigned to the highest possible present value of the ProductVersion property targeted by the patch. For example, if the patch targets values 1.3 and 1.4, but 1.4 is not applied, then the patch will be assigned to the 1.3 value. Patches that do not apply to any value of the ProductVersion property are discarded as not applicable.

3. Groups patches by patch family within each value of the ProductVersion property.
Once the patches have been grouped together by the ProductVersion target, the MsiPatchSequence table is examined, and patches are divided again into smaller groups by membership in each patch family. In contrast to grouping by the ProductVersion property, a patch may belong to multiple families, and thus may be placed in several family groups.
4. Sorts each patch family group.
Members of each family group are then sorted by their sequence value. Patches that belong to multiple families are sorted independently in each family, and cannot have contradictory sequencing data in different families.
5. Combines families for each value of the ProductVersion property.
The families sorted within the values of the ProductVersion property are then combined to generate a single ordered list for the ProductVersion value. Patches that belong to multiple families are cross-referenced to ensure that the final ordered list includes the sorting results from all families.

6. Combines groups for each value of the ProductVersion property.
Next, the sorted groups for each ProductVersion value are combined with the minor update patches to create a single list of ordered patches that apply to the product.

7. Eliminates superseded patches.
Finally, the relationships between patches are evaluated to determine whether one or more patches are no longer required. Patches that are no longer required are marked as “superseded,” and will no longer apply to the product, although they remain applied to the product in case they are required in the future.
Defining Patch Families

The patch family is the key organizational factor for the sequencing data of Windows Installer version 3.0. Patch families are designed to be easy to author and manage, but to create a new patch family successfully, you must understand how patch families are organized and processed by Windows Installer.
When to Define Patch Families

In most cases, a product should only use a single patch family for all patches that update the product. This simple default results in clear sequencing behavior for the patches without the additional complexity of managing a set of patch families. In fact, using only a single patch family for a product is the recommended approach unless the specific needs of the product require additional families, and most authoring tools will use a single family value by default, and will require no intervention by the patch author to manage the sequencing of patches.

It is important to realize that defining a single patch family does not place any significant restrictions on the patching model for the product, and it is unnecessary to define additional patch families “just in case.” Because each patch declares its own family membership, future patches can add additional patch families to the product’s servicing model without any effect on the behavior of the earlier patch.

Because of this extensibility, even complex products (for which the author anticipates a future need for multiple families) may initially begin with a single patch family and add additional families as the requirements of the product evolve.

However, there are cases in which authors may choose to create new patch families for their product. Cases in which authors may want to define additional patch families include the following scenarios:

· The author intends to create unrelated patches for independent portions of the product and wants to manage the patching of each portion independently.

· Patches for various subsets of the product’s functionality and implementation are created by independent teams on separate schedules, because using only one patch family to coordinate several patch sequences simultaneously can sometimes be difficult.

· Portions of the product are shared between several related products, and each product may need to update the shared functionality without releasing a patch for the other products.

Although additional patch families can be useful, each additional patch family may increase the complexity of the product’s servicing model. Extra families usually result in increased cost for managing the patching process, and always result in additional patching scenarios that must be tested before new patches can be released.

Family Identifiers

Patch families are defined by a unique identifier, stored in the MsiPatchSequence table of all member patches. The identifier used as the family name does not have any meaning to Windows Installer beyond that of an identifying string, so when you define a new family, use a descriptive identifier that indicates the functionality updated by the patch, the target product, or some other useful information about the patch. The only requirement for creating the family name is that it must be an identifier (as defined in the Windows Installer documentation). This definition includes the requirement that family names must not include extended characters. Because the family name is the identifier of the patch family and never appears to the end user, family names must not be localized (unless you intend to group patches with the localized name to a different family, and even then there is little reason to localize the actual family name.)

Scope of Patch Families

In most cases, a patch family name must be unique within a particular target product’s set of patches, and the default value chosen by a patch authoring environment will normally be adequate. If the same family name happens to be selected for unrelated products, the duplication will cause no problems (even if both products are installed on the same computer) because only the patches applicable to a particular product (determined by the patch applicability rules and transform validation flags) will be queried for their family membership. Each product will see its own patches and will not be aware that the other product has a patch family with the same name.

If there are a set of related products that can be targeted by a single patch (such as a suite of related products, a set of localized versions for a product, or multiple versions of a product), then a patch family may span multiple products, and the family name for any patch targeting any product must be unique across the entire set of patches targeting any of the products. For example, if there is an English version and a German version of a product, and both versions can at some point be patched by a single patch, the patch family of any patch for the English version of the product must not be shared by a patch targeting the German version of the product unless the patches are truly members of the same patch family. This ensures that future patches do not inherit unintended sequencing information because of interference with a patch that targets both languages of the product.

Patches for shared or redistributable components that can be incorporated into a wide variety of products must use a family name that can be reasonably expected to be globally unique, such as a name based on the component’s friendly name or company name.

Guidelines for Patch Families

The following are several guidelines for creating additional patch families for a product. Although not absolute requirements, these guidelines will help you to simplify patch family management and to reduce the chances of incorrectly authoring a patch.

· Use the smallest number of patch families that meet your requirements.
The simplest way to guarantee correct ordering for a set of patches is to use a single patch family. When there is only a single family and each path has a unique sequence number, there is at most one valid sequence for the patches. This limits both the authoring complexity and the testing effort. Each additional family increases the complexity of the servicing model and creates additional scenarios to analyze and test.

· All patches that update a particular resource must belong to a minimum of one common family.
Without a common family to provide order to the resource’s updates, Windows Installer has no way to guarantee that the correct copy of the resource is installed when several of the patches are targeted at a product. The patch author then becomes responsible for this tedious and error-prone process.

· Family membership must correlate with the functionality updated.
If two resources are components of the same (or similar) functionality, updates to the resources can be managed in the same family. Determining the family membership of a new patch is simpler if the families track the familiar divisions of the product.
· Family membership must correlate with the implementation updated.
If two resources are tightly bound by implementation – such that updating one resource often requires a corresponding update to the other resource– updates to the resources can be managed in the same family. There is no need for the complexity of additional families if the resources are usually updated at the same time.

· Shared components must be identified by a shared family.
If a component is shared between multiple products (whether in a product suite, set of related product types, or otherwise), the shared component must be managed in a distinct family shared by the products instead of in a different unique family for each product. This enables easy update identification to the shared component as well as easy identification of which product updates include updates to the shared components.

The MsiPatchSequence Table

Patch families, the key component of sequencing, use a declarative membership model. The membership list of a patch family is not stored at a single location; instead each patch declares the families to which it belongs. All potential patches must be examined to determine the set of patches that belong to a single family, and a patch family is always extensible and family membership is flexible. These declarations of family membership are stored in the MsiPatchSequence table of a patch. Each row in the MsiPatchSequence table defines a family membership for the patch. Therefore, when used in most common scenarios, the MsiPatchSequence table will consist of only a single row indicating the single family for the patch. Most authoring tools will automatically generate a MsiPatchSequence table with a single row containing data appropriate for the patch. Patch authors only need to edit the MsiPatchSequence table in advanced scenarios in which the default values are incorrect.

	Column
	Type
	Key
	Nullable

	PatchFamily
	Identifier
	Y
	N

	ProductCode
	GUID
	Y
	Y

	Sequence
	Version
	
	N

	Attributes
	Integer
	
	Y

Table 1 The MsiPatchSequence table
PatchFamily
The column for PatchFamily in the MsiPatchSequence table specifies the unique identifier for a patch family. The presence of a family identifier in a row indicates that the patch is a member of that family. Information about patch family names can be found in the Family Identifiers section above.
ProductCode

The column for ProductCode in the MsiPatchSequence table enables the patch to declare membership in a specific patch family only when targeting a specific value of the ProductCode property. If the value is empty, the patch family membership applies to all target products. This column is normally empty and is set only during complicated, multi-target patch scenarios. For information about conditional rows, see the Conditional Sequence Data section later in this document.
Sequence
The Sequence column in the MsiPatchSequence table enables the author to define ordering relationships between patches in a family. Just like family membership, the desired application order within a family is declarative in nature. There is no single repository of sequence data for the family. Each patch declares a position in the application order relative to other patches and the information from all applied patches is combined to determine the desired sequence in the family.

The sequence value is stored as a string in a format similar to that of a file version. The sequence number consists of four components, each ranging from 0 to 65535 (inclusive) and delimited by periods. If a component in the version string exceeds the valid range (0 through 65535), the final sequence is undefined.

At least one component of the sequence number is required, but the second, third, and fourth components are optional (and are assumed to be 0 if absent.) The sequence numbers “1” and “1.0.0.0” are considered to be the same sequence number.

All comparisons between sequence values are based on the numeric interpretation of the fields and not the string itself. That is, “1.2.3.4” and “1.02.3.4” are considered different representations of the same sequence number.

In most cases, the sequence value for patches must increase over time because this ensures that more recent patches apply after previous patches. Only in certain scenarios will a new patch need to have a sequence number below that of another existing patch. Most patch authoring tools follow this pattern by default by using the patch creation date as a component of the sequence number.

Much like the family name, the sequence number has no inherent meaning to Windows Installer, and is not required to correspond to any particular properties of the product(s) being patched. However, patch authors may choose to create sequence numbers based on a meaningful algorithm for management purposes. For example, the patch author may decide to use a combination of the product version and date of patch release to create the sequence numbers for patches that target the product.

Most authoring tools use a deterministic algorithm when automatically creating patch sequence numbers, but the algorithm varies from tool to tool. When changing tools or processes for creating patches, it is important to examine the automatically generated sequence numbers and verify that the sequence numbers of the new process are compatible with the sequence numbers of the old tool.

Even when a specific method is used to create patch sequence numbers, it is important to understand that patches may need to deviate from the calculated sequence numbers to obtain the sequencing behavior desired by the patch author. Therefore, do not attempt to decipher patch sequence numbers to obtain the “root data,” even in cases in which the algorithm is known.

When manually authoring sequence numbers that use all four fields of the sequence number, do not enable two consecutive patches by using consecutive numbers in the fourth field. (For example, 1.0.0.100 and 1.0.0.200 are better choices than 1.0.0.1 and 1.0.0.2.) Skipping some numbers in the fourth field ensures that there is space to insert later patches between the two patches.
Attributes

The column for Attributes in the MsiPatchSequence table enables the author to selectively activate specific behaviors of the sequencer when the patch is processed. Currently, the Attributes column is used only to define the supersedence relationship between patches in a family. For information about supersedence, see the Supersedence and Obsolescence section of this document.
Editing the MsiPatchSequence Table

The MsiPatchSequence table is stored as an independent table in a patch file, not as a component of the product database itself. Before the release of Windows Installer version 3.0, patches were not directly editable by most package editing tools, so versions of the tools that have been specifically targeted at Windows Installer version 3.0 may be required so you can directly edit the table in the patch.

If you use the Orca tool from the Windows Installer version 3.0 SDK, the patch file can be opened as if it were a regular database file. The MsiPatchSequence table can then be added and or its contents edited through the Orca user interface.

If you use the PatchWiz tool to create Windows Installer patches, PatchWiz automatically generates sequencing data for most common scenarios. This automatic data generation can be disabled by setting the value of the SEQUENCE_DATA_GENERATION_DISABLED property equal to “1” in the Properties table of the Patch Creation Properties (.pcp) file. Explicit data for the MsiPatchSequence table can then be added to the PatchSequence table in the .pcp file. This data is incorporated into the resulting patch. For more information about manually authoring sequence data when using PatchWiz, see the PatchWiz documentation.

If a third-party authoring environment is used to create patches, contact the program vendor for information about editing patch sequencing data. If no specific functionality is available for editing sequencing data in patch files, you can create the patches by using the authoring environment and then sequence the patches by using Orca.

Best Practices

Let the patch authoring environment handle sequencing if possible.

In most cases, patches for a product fall in a single patch family, and the sequence values in that patch family increase over time. This design idiom is so common that most authoring environments that support patch sequencing automatically create sequencing metadata that fits this design.
Use a single PatchFamily per product unless specific requirements exist for more than one family.
For most products, a single patch family provides enough flexibility to sequence patches. When multiple patch families are used, the complexity of authoring increases. If the additional functionality provided by multiple patch families is not required, you can avoid the unnecessary authoring work.
Follow the guidelines for patch families whenever possible.
The guidelines for defining patch families are designed to reduce the complexity of patch authoring and patch management. Following the patch guidelines results in fewer authoring errors and simpler sequencing behavior.
Use meaningful names for patch families.
Because patch family names have no meaning except as unique identifiers, use a meaningful name that indicates something about the servicing model (whether it is the target product identity, the updated functionality, the company name, or something meaningful to the patch author.)
Always skip numbers in the fourth field.
By skipping numbers in the fourth field between consecutive patches, future patches can be sequenced between existing patches. If patch A is 1.2.3.100 and patch B is sequenced with 1.2.3.200, a future patch could, if required, be sequenced as 1.2.3.150. Using fewer than four fields in the sequence number also ensures that space exists between two consecutive patches.

Do not try to extract data from a sequence number.
Although sequence numbers may be based on other data about the patch or target product, the algorithm used to generate the sequence number varies from authoring environment to authoring environment. In other cases, the algorithm may be ignored completely to achieve the desired sequencing behavior. Attempting to extract data from a sequence number may result in invalid data.

Supersedence and Obsolescence

Supersedence is a method for controlling the lifetime of patch content based on other patches that apply to the product. Each patch applied to the product declares whether or not it supersedes earlier patches in each patch family, and that data is used to determine the lifetime of earlier patches. In Windows Installer version 3.0, Supersedence replaces Obsolescence in Windows Installer 2.0. Patches that contain sequencing data can no longer obsolete other patches; they can only supersede them.

When a small update is superseded, its content is not applied to the product. This includes both the database transforms applied to the .msi file for the product as well as the actual payload delta used to update the product. If the patch later changes from superseded to not superseded (for example, if you remove a later patch), the transforms and payload will reapply to the product.

While minor updates may be flagged as superseded, their payload and content are always registered with the product because other patches may expect to target the baseline created by the minor update.
Defining Supersedence Relationships

Supersedence relationships are defined through the same model for sequencing relationships. When patches are grouped and sequenced within a patch family, a patch may declare that it supersedes earlier patches within that patch family by specifying the msidbPatchSequenceSupersedeEarlier flag (0x01) in the Attributes column of the family rows. This indicates that the patch incorporates the changes released by earlier patches, and therefore those earlier patches are no longer required.

Supersedence vs. Obsolescence

Although superseding an earlier patch and obsoleting an earlier patch may appear to be equivalent, the two methods are actually very different in the way that they are defined and used.

Supersedence is a much safer method of expressing patch relationships than obsolescence because supersedence is safely constrained by the patch type and sequencing results, while patches without sequencing metadata provide the dangerous ability (through obsolescence) to remove any other patch, including patches critical for the product.

	Behavior
	Obsolescence
	Supersedence

	Patch Type
	Non-sequenced
	Sequenced

	Targeting
	Listed by the PatchCode property
	Inferred from the patch sequence and patch family

	Scope
	All patches
	Patches within a patch family

	Conditional?
	No
	Yes (by the ProductCode property)

	Chaining?
	Yes (if applied in the correct order)
	Yes

	Force Removal?
	Yes
	No (only if marked as safe for removal)

	Revert Changes?
	No
	Yes

Table 2 Differences between Obsolescence (used in Windows Installer 2.0)
and Supersedence (used in Windows Installer 3.0)

Patch Type

Only non-sequenced patches may use obsolescence to remove patches. Patches with sequencing data can use only supersedence to control patch lifetime behavior. It is impossible to specify supersedence data without sequencing the patch, and obsolescence information is ignored for patches containing sequence data.

Targeting

Obsolete patches by explicitly listing their patch code in the SummaryInformation stream of another patch. This requires that all patches to obsolete must be known ahead of time. Patches are superseded by virtue of their membership in a particular patch family and their position in that family. This enables you to release patches (such as minor updates) with earlier target versions of a product with the knowledge that existing updates will still replace the small update.

Scope

A patch without any sequencing data may obsolete any other patch without sequencing data that is applied to the product regardless of whether there is a relationship between the two patches.

Patches may only supersede patches that are members of the same family, and then only patches that fall earlier in the sequence.

Conditional

It is not possible to conditionalize the obsolescence of a patch. With supersedence, you can supersede a patch for some target products but not other target products.

Chaining

Imagine a scenario with three patches: A, B, and C. In this scenario, patch A obsoletes patch B, and patch B obsoletes patch C. If all three patches are applied to the computer in the order C, B, and A, then only patch A will end up applied to the product. This is because the application of patch B causes the obsolescence of patch C. The application of patch A marks B as obsolete, leaving only patch A.

However, if the patches are applied in the order A, B, and C, no patches will be removed and all three patches will apply to the product. When patch A is applied, patch B is unknown. It has not yet been applied. Similarly, when patch B is applied, patch C is unknown. Therefore, none of the patches are obsolete and all patches remain applicable to the product. If the patches are installed in yet another order (such as B, A, and C, for example), yet another set of patches remains applicable.

In contrast, if patch A supersedes patch B, and patch B supersedes patch C, when all three patches are applied to the product, then only patch A will apply to the product regardless of the order in which the patches are applied. The definition of supersedence indicates that a superseding patch supersedes all patches with a lower sequence number in the same family once the patches are sequenced correctly. If patch B supersedes patch C, then patch B must have a higher sequence number than patch C in the relevant families. If patch A supersedes patch B, then patch A must have a substantially higher sequence number than patch B in the relevant families as well. Through simple logic, patch A must then also have a higher sequence number than patch C. Thus, patch C is superseded by both patch B and patch A. The fact that patch B is removed by patch A through supersedence has no effect on the state of patch C.

Forced Removal

When a patch is obsolete, it is always removed immediately from the set of patches for the product. When a patch is superseded, it is removed only from the set of patches for the product if it has been superseded in each of its member patch families. If there is at least one patch family in which the patch has not been superseded, the patch remains applied to the product.

Revert Changes

In Windows Installer version 3.0 and earlier versions, patch obsolescence removed the patch transforms from the database. It did not actually revert the changes made to resources on the computer. When a patch is superseded, the transforms are no longer applied to the product database, and the files updated by the patch are almost always updated again by the superseding patch. However, if a file is not updated by the superseding patch, it will be refreshed to the desired state based on the new view of the product (with the superseded patch removed).

Supersedence, Obsolescence, and Patch Lifetimes

In earlier versions of the Windows Installer, an installed patch listed as obsolete in the SummaryInformation of another patch was completely dropped from the product (even though the resources themselves were not updated). This meant that a patch that had been previously obsolete could be applied to the product again, did not show up as a known patch during inventory operations, and could place the product in a state such that later patches no longer applied to the product.

In contrast, when a patch has been superseded or obsoleted in Windows Installer version 3.0, the patch is no longer applied to the product during Windows Installer operations, but the information about the patch remains present as part of Windows Installer’s configuration data for the product. This change from Windows Installer version 2.0 results in the following useful behaviors:

Patches that are obsolete or superseded are still known to the computer.
Even when superseded or obsolete, a patch is still registered as a patch of interest for the product. While the patch no longer falls in the set of “applied” patches, data about the patch can be retrieved through Windows Installer inventory APIs. Inventory and patch distribution tools can use this data to detect whether a patch for a product is required. Even if a later patch eliminates the need for the patch, it will still show up in an inventory of the computer, with a notation that it has been superseded or obsoleted.

Patches will automatically reapply if conditions change.
If a patch is superseded or obsolete when applied to a specific product but conditions change so that the patch is no longer superseded or obsolete, the patch will be automatically reapplied to the product during the same transaction that changes the conditions. For example, if patch A is superseded by patch B and patch B is removed, patch A will automatically reapply to the product in the same transaction where patch B is removed.

Reapplication of a patch will not place the product in an incorrect state.
If a patch is superseded or obsolete and then reapplied to the product, the product resources will remain at the correct (current) state instead of being replaced with the versions from the obsolete patch. For example, if patch A is superseded by patch B and patch A is reapplied to the product, the files will remain at the versions provided by patch B. “Anti-patches” (pairs of patches that obsolete each other) maintain their previous behavior.

Applying and Removing Superseded and Obsolete Patches

In some cases, a patch that is already present may supersede or obsolete a patch applied to the product for the first time. When the new patch is applied, Windows Installer will immediately mark the patch as superseded or obsolete without actually affecting the installed resources on the computer.

Similarly, when a patch is superseded or obsolete, the patch may still be removed from the product. In this case, the patch removal will have no effect on the product because the changes for the patch were not actually applied at the time of the removal. However, the patch itself will no longer be present on the computer, and an inventory of patches for the product will not include the patch.

Migrating to Supersedence

Many times, patch authors have used obsolescence as a generic method for “removing” an earlier patch, despite the fact that this does not actually undo the changes made by a patch. Although obsolescence is no longer available for patches with sequencing data, many of these previous uses of obsolescence are managed in a safer manner by the new sequencing behavior or by other features of Windows Installer version 3.0.

	Action
	Windows Installer version 2.0
	Windows Installer
version 3.0

	Replace an earlier patch
	Listed the replaced patch as “obsolete” in the new patch
	Natively supported by Windows Installer version 3. (that is, uninstalls the previous patch)

	Remove a patch
	Created an empty patch that obsoleted the patch to be removed
	Natively supported by Windows Installer version 3.0 (that is, uninstalls the patch)

	Create a patch that can be repeatedly applied and removed
	Created two patches (a patch and an “anti-patch”) that obsoleted each other
	Natively supported by Windows Installer version 3.0 (that is, uninstalls the patch)

	Remove small updates so that a minor upgrade can use binary patching from the last minor upgrade
	Obsoleted all small updates that targeted the version to be updated
	Natively supported by Windows Installer version 3.0 (that is, it can automatically detect when to use or to ignore the binary patching information in earlier small updates)

	Remove a small update so another small update can use binary patching from the last minor upgrade
	Obsoleted all small updates that affected the file to be updated
	Natively supported by Windows Installer version 3.0 (that is, it can automatically detect when to use or to ignore the binary patching information in earlier small updates)

	Demonstrate that an earlier minor upgrade is no longer required when the new minor upgrade is applied
	Obsoleted the earlier minor upgrade and used a full-file patch or a patch targeting RTM
	Supersedes the earlier minor upgrade in the relevant families

Table 3 Guidelines on how to migrate an existing Setup based on Windows Installer 2.0
using Obsolescence to Windows Installer 3.0 using Supersedence
Using Patch Sequencing Data

Once a patch family has been defined for the product’s servicing model, the sequence metadata can be authored to help solve the following common scenarios:
Creating Small Updates

The most common update scenario for a product is the release of a small update to the product. Small updates never change the ProductCode or ProductVersion property, and usually update only a small number of files in the product with the intention of fixing a single, well-defined problem.

Releasing the First Update

As the first patch for the product, the Windows Installer patch (or .msp file) itself is targeted at the released version of the product, and the file updates in the patch must be generated by using the released product image as the target.

Generally, a meaningful string must be chosen as the identifier value for PatchFamily. Using meaningful strings will help in determining the relative sequencing requirements of future patches that might make similar changes to the product.

For the first patch, any sequence number may be used. One common practice is to use a combination of the product’s major version, the product’s minor version, and a number derived from the current date. Another possible choice is to start with 1.0.0.0 (or another obvious starting point) for the first patch. PatchWiz (from the SDK for Windows Installer version 3.0) will generate sequence numbers based on a combination of the value(s) of the ProductVersion property of the target product and the date and time when the patch is created. For the purposes of this white paper, sequence numbers are chosen based on their clarity in the explanation.

The attributes for this first patch must be 0 because no special supersedence behavior is required with respect to other patches.
	MsiPatchSequence (Small Update 1)

	PatchFamily
	ProductCode
	Sequence
	Attributes

	MyProduct
	
	1.0.1.0
	0

	File Changes for Small Update 1

	File Name
	Previous Version (from the released version of the product)
	Current Version (Small Update)

	File1.exe
	4.2.1427.0
	4.3.1912.0

Releasing a Second Small Update

For the second product update, the .msp file itself is targeted at the released version of the product as well. Similarly, the file updates must be generated by using the released product image as the target, not a product image with the earlier small update applied. This is done to ensure that the small update can apply to the product whether or not the earlier small update has been applied. As long as the small update is targeted at the released version of the file, Windows Installer can determine the steps necessary to create the desired file version.

When following the “one-product, one-family” model, ensure that the second update belongs to the same family as the first update. If the product were not following the “one-product, one-family” model, the second update would still belong to the same family as the first update because it modifies the same file as the earlier fix.

In almost all cases, sequence numbers for later patches must be greater than numbers from earlier patches. Most authoring tools use this algorithm by default. In this sample scenario, this is the correct approach, as this second update logically follows the first update, even though it does not require the earlier update to update the product.

The attributes for this second patch must be 0, because no special supersedence behavior is required with respect to other patches.
	MsiPatchSequence (Small Update 2)

	PatchFamily
	ProductCode
	Sequence
	Attributes

	MyProduct
	
	1.0.2.0
	0

	File Changes for Small Update 2

	File Name
	Previous Version (from the released version of the product)
	Current Version (Small Update)

	File1.exe
	4.2.1427.0
	5.0.1000.0

Installing the Sample Small Updates with Windows Installer Version 3.0

When the sample patches are applied to the target product, Windows Installer sequences the patches before performing any actual patch application. This process of sequencing is as follows:
1. Create a framework of ProductVersion values.

In this case, there are no minor updates to evaluate, so the framework of the values of the ProductVersion property consists of a single ProductVersion – the version provided in the .msi file itself.

[image: image5.emf]Increasing Version

1.0

MSI

2. Group patches by ProductVersion.

The absence of minor updates means that there is only one group for minor updates – the group of patches that target the single value of the ProductVersion property from the .msi file. Each small update is examined to verify that it targets the correct value of the ProductVersion property. In this case, both small updates target the correct value of the ProductVersion property, and are thus included in the group.

[image: image6.emf]Increasing Version

1.0

MSI

QFE2QFE1

3.
Group by patch family within each value of the ProductVersion property.

The sample product for this example follows the recommended “one-product, one-family” model. Because all patches belong to a single family (the “MyProduct” family), there is no additional grouping required.

4.
Sort each patch family group.
Each patch family group is sorted based on the Sequence value from the MsiPatchSequence table rows of each MSP. In this scenario, there is only a single group to sort (the MyProduct family for ProductVersion value of 1.0) and it results in the expected order, Small Update 1 followed by Small Update 2.

[image: image7.emf]Increasing MyProduct

QFE1QFE2

Sorted Order

MyProduct Number

1.0.2.01.0.1.0

Group: MyProduct for v1.0

5.
Combine product families in each value of the ProductVersion property.

Because the patches for this product all belong to a single family, there is no work to perform when combining patch family groups in each value of the ProductVersion property.

6.
Combine ProductVersion groups.

The sorted groups for each value of the ProductVersion property are combined with the minor updates to create a single list of ordered patches that apply to the product. With only one ProductVersion group for this product, there is no action taken in this step.

[image: image8.emf]Increasing MyProduct

Increasing Version

1.0

QFE1QFE2

Application Order

MyProduct Number

1.0.2.01.0.1.0

7.
Eliminate superseded patches.

Finally, any unnecessary patches are dropped. In this scenario, there are no superseded patches, so the calculated patch order remains unchanged.

Releasing a Service Pack

Most products periodically release updates that significantly change the product. These updates may consist of a collection of earlier fixes, new fixes, new functionality, or a combination of the above. These updates are generally released as minor updates that change the ProductVersion property but not the ProductCode property for the product.

Releasing the First Service Pack

The general recommendation for minor updates is to target the two most recent versions of the product, although it is also common to target the original released version of the product if the .msp file is a cumulative update. In this scenario, there is only one version of the product to target (the released version). The file updates in the patch must be generated by using the released product image as the target, not an image including the earlier small updates. This will enable the patch to update the product correctly regardless of whether the earlier small updates are available. (Windows Installer can determine when to ignore the updates in a small update because a later patch updates the same files.)

In this case, the minor upgrade (Service Pack 1) will include the product changes previously released as small updates, and will also include new updates.

Because Service Pack 1 updates the same files previously updated by the small updates, it must be a member of the same family as the previous small updates. Because the sample product follows the recommended “one-product, one-family” model, this is easy to do.

The version of File1 in Service Pack 1 includes the fixes previously released as small updates to the product, so the sequence number chosen for the MsiPatchSequence table must be greater than or equal to the highest earlier sequence number (1.0.2.0). Because File1.exe in this Service Pack also contains other fixes that have not been released before and has a higher file version than the last small update, the sequence number must actually be greater than (not equal to) the highest earlier sequence number. For clarity, the new sequence number (1.1.0.0) has been chosen to reflect the new value of the ProductVersion property, although this is not required.

The attributes for the minor update (Service Pack 1) must include the msidbPatchSequenceSupersedeEarlier flag (0x01) because the Service Pack includes the changes from all earlier small updates. Once the Service Pack 1 MSP has been applied to the product, the earlier small updates are no longer necessary.
	MsiPatchSequence (Service Pack 1)

	PatchFamily
	ProductCode
	Sequence
	Attributes

	MyProduct
	
	1.1.0.0
	1

	File Changes for Service Pack 1

	File Name
	Previous Version (from the released version of the product)
	Current Version

	File1.exe
	4.2.1427.0
	6.2.1513.0

	File2.dll
	1.5.1234
	1.6.1953

Releasing a Third Small Update

A third small update (fixing a bug in version 1.1 of the product) was released after the Service Pack. The MsiPatchSequence table for the third small update is determined by using logic similar to that used for the first two small updates. The only difference is that the third small update is targeted only at version 1.1 of the product. Thus, the file changes for the .msp file include only an update from the Service Pack 1 copy of the file. If the third small update were also to target the released version of the product, it would include two file updates, one from the released version of the file (4.2.1427.0) and a second update from the Service Pack 1 version of the file (6.2.1513.0). Windows Installer would pick the update to use based on the version of the product when the small update is applied.
	MsiPatchSequence (Small Update 3)

	PatchFamily
	ProductCode
	Sequence
	Attributes

	MyProduct
	
	1.1.3.0
	0

	File Changes for Small Update 3

	File Name
	Previous Version (from the released version of the product)
	Current Version

	File1.exe
	6.2.1513.0
	6.2.1513.1

Installing the New Sample Updates with Windows Installer version 3.0

When the sample patches are applied to the target product, Windows Installer sequences the patches before performing any actual patch application. The seven-step process of sequencing is as follows:
1. Create a framework of ProductVersion values.

Unlike the earlier sample, there is a minor update in this scenario. Therefore, the ProductVersion framework consists of two values of the ProductVersion property. The original MSI reflects version 1.0 of the Product, whereas the Service Pack 1 update creates version 1.1 of the Product.
[image: image9.emf]Increasing Version

1.0

MSISP1

1.1

2. Group patches by ProductVersion.

There are now two versions of the product to evaluate. Version 1.0 of the product (represented by the original Windows Installer with no patches applied) is the target of the two small updates created in the sample above. The second product version (created by the potential application of the Service Pack 1 patch) is version 1.1, and is targeted only by the new QFE3.

[image: image10.emf]Increasing Version

1.0

MSISP1

1.1

QFE2QFE1QFE3

MyProductMyProduct

3. Group by patch family within each value of the ProductVersion property.

The sample product for this example follows the recommended “one-product, one-family” model. Because all patches belong to a single patch family (the “MyProduct” family), there is no additional grouping required in either existing set.

4. Sort each patch family group.
Each patch family group is sorted based on the Sequence value from the MsiPatchSequence table rows of each .msp file. In this scenario, there are two groups: the MyProduct family group for version 1.0 (consisting of QFE1 and QFE2) and the MyProduct family group for version 1.1 (consisting of QFE3). Each group is sorted independently, resulting in the expected ordering of QFE1 followed by QFE2 for the 1.0 group. The 1.1 group consists of a single QFE and does not need to be sorted. At this point, there is no relationship between QFE3 and the other two QFEs because they target different versions of the product.

[image: image11.wmf]Increasing MyProduct

QFE

1

QFE

2

Sorted Order

MyProduct Number

1

.

0

.

2

.

0

1

.

0

.

1

.

0

Increasing MyProduct

QFE

3

Sorted Order

MyProduct Number

1

.

1

.

3

.

0

Group

:

MyProduct for v

1

.

0

Group

:

MyProduct for v

1

.

1

5. Combine patch families in each value of the ProductVersion property.

Because the patches for this product all belong to a single patch family there is no work to perform when combining patch family groups for each value of the ProductVersion property.

5. Combine ProductVersion groups.

The sorted groups for each value of the ProductVersion property are combined with the minor updates to create a single list of ordered patches that apply to the product. In this scenario, there are two groups that are combined by placing the MyProduct 1.0 group first in the patch order (targeting the original .msi file). Next, the first minor update is appended to the order, which will transform the product to version 1.1. Finally, the group for version 1.1 is appended to the list.

[image: image12.wmf]Increasing Version

1

.

0

QFE

1

QFE

2

Application Order

MyProduct Number

1

.

0

.

2

.

0

1

.

0

.

1

.

0

Increasing MyProduct

QFE

3

1

.

1

.

3

.

0

SP

1

1

.

1

.

0

.

0

1

.

1

6. Eliminate superseded patches.

Finally, any unnecessary patches are dropped. In this scenario, the minor update SP1 indicates that it supersedes earlier patches sequenced below 1.1.0.0 in the MyProduct family. Two patches (QFE1 and QFE2) are sequenced before the SP1 patch with lower sequence numbers. These two patches are thus dropped from the patch application order, and will not update the product, although their information is saved in case they later become relevant.

[image: image13.emf]Increasing Version

1.0

Application Order

MyProduct Number

Increasing MyProduct

SP1

1.1.0.0

1.1

QFE2

1.0.2.0

QFE1

1.0.1.0

QFE3

1.1.3.0

Migration and Compatibility

Patches containing sequencing data are not directly prevented from installing on a computer with earlier versions of the Windows Installer, nor are existing products prevented from using sequenced patches. Products can easily migrate to patch sequencing without sacrificing compatibility with previous versions.
Integration with Unsequenced Patches

Many patches with sequencing metadata will target products that have existing patches created without sequencing metadata. These products can take advantage of the benefits available in Windows Installer version 3.0 by migrating these products to a sequenced patch model.
Sequencing Behavior

When applying to products that have been updated by previous patches without metadata, the Windows Installer always places patches without sequencing metadata first in the patch sequence (in the order that they were applied to the product, just as with earlier versions of the Windows Installer). This happens even if the transaction provides a new set of patches that includes a mixture of sequenced and unsequenced patches, and even if new unsequenced patches are applied after sequenced patches for the product have already been applied.

Patches with sequencing metadata are sequenced and placed after the existing patches. Sequenced patches must target the ProductCode, UpgradeCode, ProductLanguage (if appropriate), and ProductVersion properties that result from the application of earlier unsequenced patches.

Lifetime Management

It is not possible to supersede a patch without sequencing metadata, as these patches do not have family membership or sequence values. Patches with sequencing data do not use obsoleting behavior to remove earlier patches, because the unstructured removal of earlier patches is often the source of problems when patching products. Because Windows Installer version 3.0 is capable of skipping unnecessary small updates when updating a product and also keeps information about obsolete patches in case they are required later, it is unnecessary to obsolete unsequenced patches when migrating to a sequenced patching model.

Migration Options

The patching model for non-sequenced patches was extremely simple to describe but made authoring patches difficult. All patches that updated a file were applied to the original (source) copy of the file one after the other, regardless of the type of patch. This meant that each patch must either target all potential versions of the earlier patch (including all potential small updates), must require all earlier patches to ensure that the product is in a known state, must obsolete all patches that result in targets that cannot be handled, or must include only full-file updates to the product.

In Windows Installer version 3.0, sequenced patches only need to target product baselines that have been created by minor update patches (or by installing the original unpatched .msi file). Windows Installer version 3.0 will automatically skip small updates between baselines and will only apply the most recent small update to each file, although it does not need to be the most recent small update for the entire product. This greatly simplifies the task of creating patches for a product, but relies on the fact that each update can successfully update the previous baseline that it targets.

Unfortunately, non-sequenced small updates for many products do not always meet this requirement. They include binary-delta updates from the most recent small update or explicitly obsolete a set of earlier patches in an attempt to force the product to a known state. Patches authored in this style complicate the switch to the new baseline-patching model because the presence of a sequenced patch will cause Windows Installer to use baseline-patching logic.

The migration to a sequenced patching model must, whenever possible, use a minor upgrade (for example, a Service Pack) for the transition. This enables the baseline patching logic in Windows Installer and also causes Windows Installer to begin caching previous copies of update files so that future patch applications are less likely to require access to the original product source. If the first sequenced patch is a small update, the new baseline patching logic is enabled but no product files are saved for use during later patch applications and later patches may require access to the product sources. Using a minor upgrade as the first sequenced patch provides a known checkpoint baseline for all future sequenced patches.

It is important to understand that some products migrated from non-sequenced to sequenced patching may never be able to completely eliminate source requirements because Windows Installer only caches files as they are updated by sequenced patches. Any patch that updates a file that has not been updated by an earlier sequenced patch may require access to the product source, especially if that updated file was previously updated by a non-sequenced small update.

Before releasing a sequenced patch for an existing product, the new minor upgrade must be exhaustively tested by using all potential combinations of previous non-sequenced patches. This testing will determine whether previous non-sequenced patches can be used with the new optimized baseline-patching method that may skip over some small updates. If existing non-sequenced patches contain the correct payload and targeting data, the new minor upgrade can use optimized binary-delta patching to reduce the size of the patch file. If testing reveals that the existing non-sequenced patches will not support the new baseline model, the first sequenced 3.0 must be authored to include only full-file updates to the product. Although this increases the size of the patch, it provides a clean starting point for all future patches, which may then use binary-delta patching.

These authoring recommendations apply only when migrating a product with existing, non-sequenced patches. If a product is never updated with non-sequenced patches, the first patch may be a small update or minor upgrade, and may target only product baselines. Windows Installer will not require access to the product source in most scenarios.

Installing Sequenced Patches with Previous Versions of Windows Installer
While it is possible to create a single patch that can be applied by versions of Windows Installer before version 3.0, these previous versions of the Windows Installer will not be able to sequence the patches by using the new PatchFamily sequencing data. The sequencing data, which is not understood by the earlier versions of Windows Installer, will simply be ignored and the patch will apply by using the same behavior used for unsequenced patches.

In cases where a sequenced patch is applied by a version of the Windows Installer that does not understand sequencing data, there will be scenarios in which the patching behavior is not optimal. There are several ways that a patch author can approach these cases:

· The patch author can require Windows Installer version 3.0 to apply the patch, eliminating the problem. This restriction can be placed on a patch even if the product itself enables installations of an earlier version of Windows Installer. Attempting to install the patch with an earlier version of Windows Installer will cause an error message and the patch transaction will fail.

· The patch author can accept the sequencing limitations inherent in unsequenced patches and use a combination of transform validation flags and patch obsolescence information to minimize the scenarios where the unsequenced patch is a problem. The techniques used in this approach are no different from designing patching solutions before Windows Installer version 3.0 provided the ability to sequence patches.

The approach chosen may depend on the type and contents of the patch. Minor upgrades, with their changes to the product version and tendency towards targeting multiple versions of the product, are often relatively easy to author in a version 2.0-compatible form. Small updates, with their ambiguous ordering and targeting behavior, generally present more difficulties.

The patch author must evaluate whether the many benefits of the new sequencing behavior justify the requirement of Windows Installer version 3.0 for customers applying the patch.

Advanced Sequencing

With the metadata available for patch sequencing in Windows Installer version 3.0, it is possible to gain more control over the sequencing and behavior of Windows Installer patches. Although the defaults provided by most authoring tools are sufficient for most servicing scenarios, there are cases in which patch authors may need to adjust the default metadata to manage some advanced patching scenarios.
Backporting an Existing Fix

In contrast to the scenario in which a new patch targets both the current version of the product and previous versions of the product, when creating a patch for a fix backported from a later version the patch must recognize the scenarios in which it no longer applies and remove itself from consideration whenever the product reaches a state where the fix already exists.

The key to creating such a patch is the selection of appropriate sequence numbers. The sequence numbers in the relevant families must fall in the range between the lowest version targeted by the small update and the first patch that incorporates the fix.

[image: image14.emf]Increasing Sequence

Increasing Version

1.1

1.2

QFE1SP1SP2QFE2QFE3

Application Order

Sequence Number1.0.0.01.2.1.01.2.0.01.1.2.01.1.1.0

Targets: v1.1

Sequence: 1.1.9.0

QFE4

MSI Updates

Targeting Data

MetaData

Payload

QFE4

Targeting restricts range of the QFE to

between a pair of minor updates.

The new sequence value(s) determine the

application point within the target version.

1.1.9.0

Figure 4 Sample patch for backporting a fix included in a later product version

Although it is true that the targeting information in the patch will place the small update at the appropriate point with respect to minor upgrades, the use of an appropriate sequence number enables both the correct supersedence relationship to other patches and the ability to sequence this small update with respect to other small updates that apply to the same target version.

If the minor upgrade has not been marked as “supersedes earlier” in its MsiPatchSequence table (an extremely rare scenario), the small update will not be removed from consideration when the minor upgrade is applied, but will have little effect on the computer if the minor upgrade contains appropriate data about the binaries.

Multi-Target Patches

A multi-target patch is a patch that targets multiple Windows Installer files with a single .msp file. There are two cases in which multi-target patches are useful: targeting multiple versions of a product and targeting multiple SKUs of a product.

Targeting Multiple Product Versions

During the lifetime of a product, a problem may be found that requires a fix to several released versions of the product. While it is possible to simply create multiple patches with the same fix (each targeting a single product version), there are several drawbacks to this approach. The most serious issue is that a customer who applies a version-specific patch to the product and then upgrades to a later version that also needs the patch will lose the fix because the existing single-version patch no longer applies to the product. In effect, upgrading the product has caused the original problem to reappear.
A better solution is to create a single patch that targets several versions of the product. When the customer applies the fix to one version and then upgrades the product to another version, the existing patch simply shifts its position in the sequence to target the correct version of the product. This behavior holds true even in the opposite case in which the customer uninstalls a Service Pack, causing the product to switch to a lower version number. As long as the “new” version of the product (whether higher or lower) is supported by the patch, the small update will simply shift to targeting the correct version.

For example, consider Product P that has two possible minor upgrades, SP1 and SP2, as illustrated below. When a fix is required for all three versions (the original version, SP1, and SP2), a multi-targeted patch can be created that keeps the customer updated, regardless of which product version is actually installed on the computer.

Once the actual fixed binaries have been created, the patch author creates three updated images (one for each target version), and creates a patch with the appropriate deltas.

[image: image15.emf]QFE2

MSI Updates

Targeting Data

MetaData

Payload

1.0

MSI

FileA

FileB

FileC

Increasing Version

1.11.0

MSI

FileC

MSI

FileA

FileB

FileC

MSI

FileA

FileB

FileC

QFE2

1.2.4.0

QFE2

1.2.4.0

Increasing Sequence

SP1

1.1.0.0

SP2

1.2.0.0

1.2

QFE1

1.1.1.0

QFE2

1.2.4.0

3.1

2.03.0

MSI

FileC

3.1

MSI

FileC

3.1

1.0, 1.1, 1.2

1.2.4.0

A single QFE applies to

three targets and updates

each with a fix.

File DeltaFile Delta

File

Delta

MSI DiffMSI DiffMSI Diff

Figure 5 A patch with multiple target images and updated images based on versions

The patch is then authored with a sequence number in the appropriate family that is greater than any current sequence number for the patch family.

When the patch is applied, the installer examines the versions listed as targets of the patch and ensures that the patch is applied at the highest possible target version. The fact that the sequence number is higher than any existing patch ensures that none of the existing Service Pack patches will ever supersede the patch.

When a Service Pack patch is uninstalled (in this case, SP2), the small update uses the multi-version targeting of the small update and locates another version of the product where the small update can apply. In this example, the small update targets the SP1 version of the product and ensures that the file remains updated.

[image: image16.emf]Increasing Sequence

Increasing Version

1.1

1.2

SP1QFE2SP2QFE1QFE2

Application Order

Sequence Number1.2.4.01.2.4.01.2.0.01.1.1.01.1.0.0

Targets: v1.0, v1.1, v1.2

Sequence: 1.2.4.0

QFE2

MSI Updates

Targeting Data

MetaData

Payload

QFE2

Three target versions indicates three potential

locations for the QFE, but the latest valid

location is chosen.

Removing SP2 causes QFE2

to automatically shift to a valid

target. (SP1)

1.2.4.0

1.0

Figure 6 Removal of a service pack triggering the retarget of a small update

Note that the previous steps are actually the default results when using PATCHWIZ to create a small update, as PATCHWIZ chooses (by default) a sequence number based on a combination of the highest targeted value of the ProductVersion property for the patch and the patch creation time.

Combining Multi-Target and Backported Fixes

If a backported fix must target multiple previous versions of the product, the patch must combine the sequencing behavior of a backported fix and a multi-target patch. The patch author can satisfy the requirements of both by selecting appropriate sequence numbers for the small update. Consider the case where a fix in SP4 of a product needs to be backported as a small update to SP3 and SP2. In this case, the sequence number for the small update would be greater than SP2 and SP3’s sequence numbers in the appropriate family, but less than the sequence number from SP4. In this case, the patch will shift between targeting SP2 and SP3 as long as those versions exist on the computer, but as soon as SP4 is installed, the patch will no longer be required and will become inactive. (But, of course, if SP4 is subsequently uninstalled, the small patch will begin to apply again.)

Targeting Multiple Product SKUs

The other common scenario for using multi-target patches is when a single patch targets the same version of multiple SKUs of the product. For example, the product may ship in an Enterprise Version, a Developer Version, and a Trial Version.

Because a single patch can target any of the product’s .msi files, when defining the PatchFamily identifiers for the set of products, consider the entire set of products that can be patched as a single patch and avoid duplicating names across the products. Even if no patch targets multiple SKUs of the product today, by not reusing family names across the products, you will enable future patches that might target the entire range of SKUs.

This does not mean that each product must use a completely unique set of patch families. If a particular portion of functionality is implemented in a similar manner across multiple SKUs of the product such that a single patch can update the functionality in the products, by using the same patch family in patches targeted individually at the products is appropriate. The recommendation not to use the same identifier is intended to prevent the use of the patch family for unrelated functionality, resulting in incorrect patch sequence dependencies. For example, do not create a “ProductCore” family in the Enterprise version and a “ProductCore” version in the Developer version unless the core functionality of the products is actually similar enough that a single patch can update both (even if such a patch does not exist today).
For example, consider a set of products P, Q, and R, that are different products in the same general product family. Each product has had patches released for its unique features, but a patch now needs to be released to fix a problem in a shared .dll file common to all products. While individual patches can be targeted at each product, a single multi-targeted patch can be also created that keeps the customer updated, regardless of which product is actually installed.

Once the actual fixed binaries have been created, the patch author creates three updated images (one product for each target product), and creates a patch with the appropriate deltas.

[image: image17.png]
Figure 7 A patch with multiple targets and updated images based on SKU

When applied to one of the target products, the patch will sequence itself based on that target. If multiple targeted products are installed on the same computer, the patch can apply to each, and will be sequenced independently for each target product.

Multi-Family Patches

It is possible to place a patch in multiple patch families simultaneously simply by placing multiple rows in the MsiPatchSequence table of the .msp file. There are several cases in which a patch belongs to more than one family:

· The patch includes updates to parts of the product defined by different patch families because the fix will not function without a related fix contained in a component belonging to a different family.

· A patch consolidates functionality updates provided independently in several earlier patches.
· The patch updates the same functionality of two products that were previously updated by distinct patches using different family values.
In all cases, the behavior of Windows Installer when encountering a multi-family patch is the same.
Sequencing Multi-Family Patches

When sequencing a set of patches that involves multiple patch families, Windows Installer calculates a single unified sequence that meets the sequencing restrictions defined for all patch families. It does this by first calculating the sequence for each family independently, then finding points of intersection in the patch families.

[image: image18.emf]Increasing Family A

Increasing Version

1.1

QFE1SP1QFE6QFE2

Application Order

Family A Number

6.5.0.06.3.6.06.3.5.0

Increasing Family B

Family B Number7.1.0.04.3.1.16.5.0.0

QFE5

6.3.9.0

QFE4

7.0.0.0

QFE3

Figure 8 Consolidating sequences across multiple patch families

The illustration above indicates a set of patches for a product belonging to two different patch families, with three patches (Patch SP1, Patch QFE2, and Patch QFE5) belonging to both families. When the families are evaluated, Patches QFE1, QFE2, QFE3, and QFE5 will apply in that order within Family A, while patches QFE2, QFE4, QFE5, and QFE6 will apply in that order for Family B. When the two families are applied to the product together and a unified order calculated, the patches can apply in the order of QFE1, QFE2, QFE3, QFE4, QFE5, QFE6.

It is important to understand that patches in independent families are assumed to have no ordering restrictions relative to each other and thus may apply in any order. In the example above, patch QFE3 may be applied before or after patch QFE4, as long as all the patches meet their stated restrictions of applying to the correct product version and before patch QFE5.
If a new patch, QFE7, is applied to the product with sequencing restrictions, indicating that it must come after QFE4 and before QFE3, the order of application for QFE3 and QFE4 may change to help meet the new requirements. If QFE3 and QFE4 are truly independent of each other (as indicated by their lack of a common family), then this change in application order will be completely transparent to the product.[image: image19.emf]Increasing Family A

Increasing Version

1.1

QFE1SP1QFE6QFE2

Application Order

Family A Number

6.5.0.06.3.6.06.3.5.0

Increasing Family B

Family B Number7.1.0.04.3.1.1

QFE3

6.5.0.0

QFE5

6.3.9.0

QFE4

7.0.0.06.6.0.0

QFE7

6.3.8.0

QFE4 applies earlier

QFE3 applies later

QFE3QFE4

Figure 9 Addition of a new patch, changing the application order for existing patches

If there is a dependency in the order of application between QFE3 and QFE4, the patches must have at least one family in common, and that family must define the relationship between the two patches.
Dependency Cycles

Unfortunately, there are scenarios in which the instructions in patch families are so restrictive that it is not possible to define a single patch sequence that satisfied all the stated requirements. One way to encounter this scenario is when two distinct teams are each responsible for patching their own feature of the same product and each team simultaneously releases an update that incorporates an earlier version of the other team’s work.

Consider the example below, where two patch families provide contradictory instructions for a pair of patches. In Family A, Patch QFE1 indicates it must apply before Patch QFE2, whereas in Family B, Patch QFE2 indicates it must apply before Patch QFE1. There is no valid sequence that can meet both conditions. When Windows Installer version 3.0 encounters a set of patches with sequencing restrictions that cannot be met, the patch application operation will fail (and Windows Installer will return ERROR_PATCH_NO_SEQUENCE).

[image: image20.emf]Increasing Family A

Increasing Version

1.1

QFE1SP1QFE2

Application Order

Family A Number

1.1.47.01.1.35.0

Increasing Family B

Family B Number1.1.1.01.1.2.0

A: 1.1.35.0

B: 1.1.2.0

QFE1

MSI Updates

Targeting Data

MetaData

Payload

FileA.dll: 5.0

FileB.dll: 6.1

QFE2

MSI Updates

Targeting Data

MetaData

Payload

FileA.dll: 7.0

FileB.dll: 6.0

A: 1.1.47.0

B: 1.1.1.0

Figure 10 Multi-family patches with no valid sequence: a dependency cycle

If a contradictory scenario is encountered, usually one of the family sequences turns out to be in error and the problem can be solved by examining the underlying product updates and correcting a sequence value. However, if both family definitions are, in fact, correct, the scenario is untenable and one patch must be arbitrarily chosen as the later patch. This arbitrarily chosen “later” patch must be updated to include the latest versions of the functionality described by Family A and Family B and the metadata for the patch must be updated to include sequence values reflecting this new relationship. Simply updating the sequence value to resolve the sequencing ambiguity without updating the actual contents of the patch to include the latest versions of all resources will usually result in incorrect results when both patches are applied because Windows Installer has no way of knowing that the lower version number in the last patch is incorrect.

[image: image21.emf]Increasing Family A

Increasing Version

1.1

QFE1SP1QFE2

Application Order

Family A Number

1.1.47.01.1.35.0

Increasing Family B

Family B Number1.1.2.01.1.2.0

A: 1.1.35.0

B: 1.1.2.0

QFE1

MSI Updates

Targeting Data

MetaData

Payload

FileA.dll: 5.0

FileB.dll: 6.1

QFE2

MSI Updates

Targeting Data

MetaData

Payload

FileA.dll: 7.0

FileB.dll: 6.1

A: 1.1.47.0

B: 1.1.2.0

QFE2

1.1.47.0

1.0.6.0

OF2 incorporates the

fix to Family B, which

resolves the conflict.

Figure 11 An updated patch scenario with no dependency cycle
When working with multiple families in a patch, supersedence logic applies on a per-family basis. If a patch is a member of two families, the patch must be superseded in both families before the patch is removed from the set of patches applied to the product.
For example, in the following scenario, two small updates (Patch QFE1 and Patch QFE2) are applied to the product in two different families (Family A and Family B). These two small updates are followed by a third small update (Patch QFE3), which includes the functionality of both earlier small update, and is thus a member of both Family A and Family B.
[image: image22.emf]Increasing Family A

Increasing Version

1.1

QFE1SP1QFE2

Application Order

Family A Number

6.3.5.0

Increasing Family B

Family B Number4.3.1.1

6.3.9.0

QFE3

4.3.2.0

Figure 12 Supersedence in Multiple Family Cases

When patch QFE4, which is only a member of Family A and supersedes only patches in that family, is added, patch QFE1 will no longer directly apply to the product. However patch QFE3, which is a member of both Family A and Family B, will still apply to the product, because there is no patch that supersedes patch QFE3 in Family B.
[image: image23.emf]Increasing Family A

Increasing Version

1.1

QFE1SP1QFE2

Application Order

Family A Number

6.3.5.0

Increasing Family B

Family B Number4.3.1.1

6.3.9.0

QFE3

4.3.2.0

6.3.10.0

QFE4

Family A Supersedence

Figure 13 A patch superseded in one family but not in others
If QFE5 is later applied to the product and is a superseding member of Family B, patch QFE3 will be superseded in both families and will no longer directly apply to the product.
[image: image24.emf]Increasing Family A

Increasing Version

1.1

QFE1SP1QFE2

Application Order

Family A Number

6.3.5.0

Increasing Family B

Family B Number4.3.1.1

6.3.9.0

QFE3

4.3.2.0

6.3.10.0

QFE4

Family A Supersedence

QFE5

4.3.5.0

Family B Supersedence

Figure 14 A multi-family patch superseded in all patch families
Conditional Sequence Data

When authoring a single patch to target several related products or a set of SKUs, patch authors must occasionally deal with functionality that exists in one product but not another, or is implemented differently in different products. Often these relationships can best be expressed through multiple families, but because patch sequencing metadata is shared by all targets of the patch it can be difficult to create metadata that is appropriate for every target. The ProductCode filtering ability in the patch sequencing metadata provides additional sequencing flexibility for multi-target patches to handle these scenarios.

Conditional Family Membership
In some cases, package authors work with a single “master” .msi package for a product. Multiple “types” of a product are then created by copying the master package and removing portions of the Windows Installer table data which install functionality specific to a subset of the products.
For example, a complex word processing product might include a spell checker, grammar checker, medical dictionary, and legal dictionary. The “master” .msi file includes authoring data to install the entire set of components that are possible in the product. The “medical” version of the product is simply the master package with the legal dictionary removed (and with a distinct product and package code). The “legal” version of the product is simply the master package with the medical dictionary removed (and again with a distinct product and package code). Finally, the standard version of the product is the master package with both the legal dictionary and medical dictionary removed.

Servicing this type of product line presents unique challenges. Some components exist in all versions of the product whereas other components are specific to a subset of the .msi files. To reduce the potential for confusion about which patches are required, release a single patch that targets all of the related versions of the product, regardless of the actual components updated by the patch file.

Conditional families provide the flexibility needed to manage this scenario by enabling the patch author to change the family membership of the patch based on the target product identity.

Consider the example scenario described above. In this scenario, the product has been patched by a set of small updates – one patch for the medical dictionary (targeting only the “medical” version of the product), one for the legal dictionary (targeting only the “legal” version of the product), and one for the spell checker component (targeting any version of the product). Because these three small updates are separate, target-independent versions of the product, they each have their own value for PatchFamily.

[image: image25.emf]MSI

FileC

FileA

1.0

MSI

FileA

Medical Version

MedicalFamily

ProductCode: {….A}

6.0

QFE1

MSI Updates

Targeting Data

MetaData

Payload

MSI

FileC

FileB

1.0

MSI

FileB

Legal Version

LegalFamily

ProductCode: {….B}

1.2

QFE2

MSI Updates

Targeting Data

MetaData

Payload

MSI

FileC

1.0

MSI

FileC

CoreVersion

CoreFamily

ProductCode: {….C}

4.1

QFE3

MSI Updates

Targeting Data

MetaData

Payload

Figure 15 Servicing scenario for a product family with independent small updates
To release a single service pack that incorporates all of the previous small updates, conditional families can be used. The .msp file for the service pack includes the fixes for all components. Because the “medical” version of the product is the only version that includes the medical dictionary component, the Medical patch family is conditionalized based on the ProductCode property of the medical version of the product. When the patch is applied to the standard or legal versions of the product, the patch family row is ignored.

[image: image26.emf]MSI

FileA

Medical Version

ProductCode: {….A}

MSI

FileB

1.0

Legal Version

ProductCode: {….B}

MSI

FileC

Standard Version

ProductCode: {….C}

SP1

MSI Updates

Targeting Data

MetaData

Payload

MedicalFamily if ProductCode A

LegalFamily if ProductCode B

CoreFamily

1.0

1.0

MSI

FileA

MSI

FileB

4.1

MSI

FileC

1.2

6.0

Master

Source

Image

Target all three ProductCodes

with the same patch.

MSI Diff

MSI Diff

MSI Diff

File Delta

File Delta

File Delta

Increasing Version

1.01.1

Figure 16 A product family serviced by a patch with conditional family membership
A common alternative solution is to skip the conditional aspect of the families and simply indicate that the service pack patch is always a member of the Grammar, Spell, and Medical families. However, there is a significant drawback to this approach – as a member of all three families, the service pack cannot be superseded by a later service pack unless all three families are superseded. As a result, the service pack for the “standard” version of the product cannot be superseded by a later service pack unless a supersedence relationship was declared for portions of the product that do not exist. This difficulty will severely limit the flexibility in targeting future service packs.

Changing Family Systems

Occasionally, the servicing model for a product will change significantly over its lifetime. If the existing patch family proves inadequate for the new servicing model, future patches can often switch to a new model with no negative effect.

Adding Additional Families

There are two distinct approaches possible when adding additional families to a servicing model – the scope of the existing family can be shrunk, or the new families can be added as a subset of the existing family scope. Each method has both advantages and disadvantages.

To shrink the scope of an existing family, the patch author examines the previous patches in the existing family for commonality in updated functionality and considers the family as if it were always intended to cover only those portions of the product that have already been updated. Any future updates to other portions of the product are placed in their own family.

One major disadvantage to this approach is that it is possible only when all existing patches update related functionality in the product. However, because this approach places no authoring restrictions on future patches, it enables greater flexibility.

[image: image27.emf]Increasing Family A

Increasing Version

1.1

SP1QFE1

Application Order

Family A Number12.3.1

Increasing Family B

Family B Number

9.0.43

QFE4

12.3.56

QFE3

9.0.60.0

QFE2

FileA

FileB

9.0

FileAFileAFileA

FileBFileB

12.4.0

Family A Files

Family B Files

Figure 17 Adding a family to an existing servicing model
The other possibility for adding a family is to add the new family as a subset of the existing family. In this model, the existing family remains as the product-wide family, and a new family is used to sequence future patches in each area of functionality. Moving forward, future patches must be members of both Family A (to ensure correct sequencing against previous patches) and the new Family B (to sequence against more recent patches). In this system of adding a patch family, the sequence number for Family A does not change in any future patches. This lets the new patch families assume responsibility for sequencing the patches. If the sequence number in Family A does change in any future patch, the patch author must ensure that the sequence in Family A never contradicts the sequence in any other families for the product.

As an example of the two models, consider the case in which a set of existing patches for a product have been released as members of a single patch family – Family A. If this previous set of patches all updated the spellchecker of the product, the patch author merely begins thinking of Family A as the “spellchecker patch family”. If a future patch is released for the grammar checker, it can be placed in its own new family, which exists side-by-side with the existing patch family.

The alternative solution is to leave Family A as the family for the entire product and define a new “grammar checker” family (Family B). Any future spellchecker fixes can be placed solely in Family A or in a new family (Family C) within the scope of Family A.

[image: image28.emf]Increasing Family A

Increasing Version

1.1

SP1QFE1

Application Order

Family B Number

12.3.1

Increasing Family C

Family C Number

9.0.43

QFE4

12.3.56

QFE3

9.0.60.0

QFE2

FileA

FileB

9.0

FileAFileAFileA

FileBFileB

12.4.0

Family A\B Files

Family A\C Files

Increasing Family B

15.0.0.0Family A Number15.0.0.015.0.0.010.0

FileB

Figure 18 Adding a family to an existing servicing model when files in all new families
have been previously updated
Dropping Families

In most cases, once a patch family has been used in a servicing model for a product, the patch family must be considered for all future patches. There are two ways to remove a patch family from servicing a product: by abandoning the family sequence and by requiring a specific baseline.
To abandon a specific sequence, the patch author “freezes” the sequence number for a particular patch family at a specific value, and that value is used for all future patches. Because the values are always the same in the patch family, it is irrelevant when sequencing future patches. The sequencing logic for the new patches must then come from other patch families. (Failure to ensure that all new patches are members of at least one other family may result in incorrect sequencing behavior). The disadvantage of this approach is that all future patches must include the abandoned patch family data to ensure that they are correctly sequenced after existing patches that are members of the abandoned patch family.

The other way to remove a family from consideration is to create a minor upgrade (which changes the product version) that supersedes all earlier patches in all patch families and provides initial values for any new patch family sequences. As long as all future patches target only the new version of the product, the patches do not need to contain family data for the previous patch families. The disadvantage to this approach is that all future patches must target the new version of the product or previous versions of the product, but not both. A patch that did target multiple versions of the product must include both previous and current family data to ensure proper sequencing. This reintroduces the previous families into the sequencing model, negating the entire effect. This restriction also means that the minor upgrade cannot be uninstalled without also removing all later patches (because the later patches cannot target the earlier version of the product.)

[image: image29.emf]Family A

Increasing Version

1.1

SP1QFE1

Application Order

Family B Number

12.3.1

Increasing Family C

Family C Number

9.0.43

QFE4

12.3.56

QFE3

9.0.60.0

SP2

FileA

FileB

9.0

FileAFileAFileA

FileBFileB

12.4.0

Family A\B Files

Family A\C Files

Increasing Family B

15.0.0.0Family A Number10.0

FileB

--

1.2

Patches in the new family model only

apply to version 1.2 and higher.

Figure 19 Dropping a patch family from an existing servicing model

Glossary

Baseline
A “checkpoint” for a product used to simplify and to improve the efficiency of a product’s servicing model. In Windows Installer, a baseline is created whenever the version number for a product changes (by a minor upgrade).
Chronological Patch Order
The order in which patches are supplied to the computer when updating a product. Applying patches in chronological order often results in incorrect behavior. Windows Installer version 3.0 patch sequencing ignores chronological order in favor of the logical patch application order.
Cumulative Service Pack Patch
A patch that contains new changes to the product but also includes changes to the product that have already been released in earlier Service Packs. A cumulative Service Pack can apply even if the earlier Service Pack has not been applied to the product.
Logical Patch Order
An order for patch application that is defined by the progression of changes made to the target product (usually in increasing version) and the intent of the patch author, regardless of the actual order in which patches are created or supplied to Windows Installer. Windows Installer version 3.0 patch sequencing enables patch authors to define a logical order and enforce that order upon patch application.
Major Upgrade
A patch that changes the identity of the application by changing the ProductCode GUID. Usually changes the product version also but not necessarily by increasing it.
Minor Upgrade
A patch that does not update the value of the ProductCode property, but does increment the value of the ProductVersion property of the target product. A minor upgrade usually includes changes provided in all previous small updates, and may include new fixes. A minor upgrade may update a significant fraction of the files in a product. An example of a minor upgrade is a Service Pack.

Multi-Target Patch

A patch that targets more than one product or version of a product. This may indicate that the patch targets multiple products in a related set (such as a suite of applications), multiple languages of the same application, or totally independent products.

Orca
A tool that is provided as part of the Windows Installer SDK used for editing Windows Installer database (.msi) files and Windows Installer patch (.msp) files.
Patchwiz.dll
A tool that is provided as part of the Windows Installer SDK used for generating patch files.
Patch Family

A grouping of patches that update the same, similar, or related functionality of the target product and are each intended to apply in a specific order relative to other patches in the same family. A patch may belong to multiple patch families, in which case the desired patch application order is computed as the combination of the sequence defined by each individual family. Most patches will belong to a single patch family, and most products will be updated by a single patch family.
Payload
The updates to the product’s files that are contained within a patch. The payload may consist of full copies of a file, a binary delta from one or more earlier versions of a file, or a combination of the two. However, the payload may not have full copies and binary deltas for the same file.
Small Update
A patch that does not update the value of the ProductVersion or ProductCode property of the target product. Usually updates a small set of files in order to fix a single problem with the product. Small updates are sometimes called “hot fixes” or “QFEs.”
Targeting Data
Information stored inside an .msp file that indicates the products and versions of those products that can be updated by the patch.

