The Kixforms Library

“kix it up a notch”

Table of Contents

3Installation

3Introduction

5Overview

5Quickstart FAQ

9Kixforms Library Object Reference

9AddItem Method

11Alignment Property

12Autosize Property

12BackColor, ForeColor Properties

13BackStyle Property

13BorderStyle Property

14Cancel Property

15Caption Property

15Center Method

16CheckBox Control, CheckBox Method

17Circle Method

18Clear Method

18ComboBox Control, ComboBox Method

18CommandButton Control, CommandButton Method

20CurrentX, CurrentY Properties

21Default Property

22DoEvents Method

22DrawStyle Property

23DrawWidth Property

23Enabled Property

24FillColor Property

24FillStyle Property

26FontBold, FontItalic, FontStrikethru, FontUnderline, FontWeight Properties

29FontName Property

30FontSize Property

31ForeColor Property

31Form Object

32Frame Control, Frame Method

33Height, Width Properties

34Image Control, Image Method

36Label Control, Label Method

37Left, Top Properties

38ListBox Control, ListBox Method

40ListCount Property

40ListIndex Property

41ListRows Property

41Locked Property

41MaxButton Property

42MinButton Property

42MultiLine Property

43OnClick Event

44OnMouseDown, OnMouseUp Events

45OnMouseMove Event

46OptionButton Control, OptionButton Method

47Picture Property

48PicturePosition Property

48Print, PrintXY Methods

49PSet Method

49RGB Method

51ScaleHeight, ScaleWidth Property

51Screen Object

51SelLength Property

52SelStart Property

53SelText Property

53SetFocus Method

54SpecialEffect Property

54TabStop Property

54Text Property

55TextBox Control, TextBox Method

56TakeFocusOnClick

57ToggleButton Control, ToggleButton Method

58Top Property

58Value Property

59Visible Property

59Width Property

Installation

1. Download kixforms.zip from http://kixtart.tripod.ca
2. Extract kixforms.dll into any existing or newly created folder.

3. Start a DOS command window.

4. Change directory to the folder containing kixforms.dll

5. Enter the following command:

c:\> regsvr32 kixforms.dll

A messagebox should appear saying "DLLRegisterServer in kixforms.dll succeeded", simply click ok and continue.

The installation is now complete.

Upgrade

Follow the same instructions as per the installation steps above. You can simply overwrite the older kixforms.dll and re-register, or if you prefer, rename the old kixforms.dll to kixforms.old then extract the new version and re-register.

Removal

1. Start a DOS command window.

2. Change directory to the folder containing kixforms.dll.

3. Enter the following command:

c:\> regsvr32 /u kixforms.dll

A messagebox should appear saying "DLLUnregisterServer in kixforms.dll succeeded", simply click ok and continue.

Delete kixforms.dll

The removal is now complete.

Introduction

This is the first of several documents describing the Kixforms Library, an object oriented Kixtart extension that provides a comprehensive collection of forms, controls and scripts for building many kinds of graphical applications. Kixforms was developed by Shawn Tassie of CGI Canada. The KiXtart Scripting Language was developed by Ruud van Velsen of Microsoft Netherlands.

The current version of Kixforms has been successfully tested with KiXtart 4.02 (final) and above. To obtain the latest version of Kixforms, please visit the my web site at:

The Kixforms Homepage
To obtain the latest version of KiXtart, please visit the KiXtart Bulletin Board at:

KiXtart Download Page
History

There has been a lot of work done over the past year and a half in terms of windows snapins for KiXtart. The intent is to provide a Visual Basic-like interface for the KiXtart scripting langauge. The history of this snapins is as follows:

1) kixwin32.dll - A very old, very crude event polling snapin (by yours truly).

2) kixbgi32.dll - A much better snapin with an interface based on the Borland Graphics Standard (BGI). Developed Feb, 2001 - this plugin made it all the way to Build 18 before development work stopped. It was mostly used for writing “underground” KiXtart game scripts. Unfortunately, only one or two of these scripts have never been posted to any public forums. Chris Matheson (cj) and Jochen Polster (jpols) of kiXtart.org helped in the development of BGI and wrote some VERY impressive scripts in the process.

3) kixforms.dll – An Windows snapin with an ActiveX interface. Developed in January of 2001 and using the same powerful graphics engine developed in KIXBGI, the intent is to conform (as much as possible) to the VB style standard for the programming of ActiveX Controls.

Intended Audience

This paper assumes an intermediate to advanced level of KiXtart scripting ability and a solid understanding of general programming principles.

Requirements

Kixforms has been successfully tested on the following platforms:

Windows NT 4.0

Windows 2000 (NT 5.0)

Windows XP (NT 5.1)

Windows 98 support will be in the next release.

Overview

The basic procedure for using the Kixforms Library is as follows. First a form is created then various graphical objects (controls) are placed into it. Types of objects that can be placed into forms include: buttons, checkboxes, listboxes and others. After the form has been defined it is displayed on the screen and control is given to a library procedure called DoEvents(). This routine takes care of the interaction between the user and the form and returns as soon as some change occurs in the status of the form due to some user action. In this case control is returned to the script (indicating that the object changed) and the script can take action accordingly, after which control is returned again to the DoEvents() routine.

The Kixforms Library is simple to use. Defining a form takes only a few lines of code and interaction is fully handled by the library routines. A number of demo programs are provided to show how to piece together various parts of the library and demonstrate how easy forms are built and used. They can be found on the KiXtart Bulletin Board. Studying these demos is a good way of learning the system.

Quickstart FAQ

How do I create a form ?

Always start with the following template code. This is the absolute barebones (minimum) Kixforms script. It may not seem like it does very much, but under the covers, these statements pack a lot of punch. Plus, by running this script first, it verifies that the library is properly installed and registered:

Break On

$Form = CreateObject("Kixtart.Form")

$Form.Show

While $Form.Visible

 $=Execute($Form.DoEvents)

Loop

Exit 1

First, the script creates an instance of a Form object and assigns it to a KiXtart variabled called $Form. We will use $Form as a handle to our form throughout the rest of the script. A form (by default) is not visible to the user, so the next step is to show the form - we do this with the Show method. Now we need some way to start the form and query for events from the user. This is accomplished with a While loop and inside that, a method call to a function called DoEvents. In a nutshell, what this construct is saying is “While our form is visible, execute the next event generated by the user”. Because our form has no visual controls, the only thing a user can do is close the form. When a form is closed, it becomes invisible or hidden - at which point the While condition will evaluate FALSE and the loop will stop and the script will terminate normally.

How do I change the title bar ?

After the form is created, assign a string to the forms Caption property, like this:

$Form.Caption = "This is my first KiXform script"

How do I change the size and location of a form ?

You can change the size and location of your form using it's Left, Top, Width and Height properties, for example, here's a script that creates a form that is 300 pixels wide by 600 pixels high. It then centers the form on the screen using the Center method.

Break On

$Form = CreateObject("Kixtart.Form")

$Form.Caption = "A tall drink of water"

$Form.Width = 300

$Form.Height = 600

$Form.Center

$Form.Show

While $Form.Visible

 $=Execute($Form.DoEvents())

Loop

Exit 1

How do I change the color of a form

Use the BackColor property and a form function called RGB. The RGB function allows you to specify your color in terms of its Red, Green and Blue color components. Here’s an example: suppose you want to set the background color to yellow. Yellow is made up of equal parts Red and Green, here the code:

Break On

$Form = CreateObject("Kixtart.Form")

$Form.BackColor = $Form.RGB(255,255,0)

$Form.Show

While $Form.Visible

 $=Execute($Form.DoEvents())

Loop

Exit 1

How do I add a button to a form ?

The form object has a create function for every control that you can place on a form. For example, if you wanted to add a command button to a form, use the commandbutton function, like this:

Break On

$Form = CreateObject("Kixtart.Form")

$Button = $Form.CommandButton

$Form.Show

While $Form.Visible

 $=Execute($Form.DoEvents())

Loop

Exit 1

How do I set the location of a button ?

A command button has the same Left, Top, Width, Height and Caption that a Form has. In object oriented parlance, they call that “Poly-Morphism” – when objects share the same properties and behaviors. There are actually two ways of specifying the caption and location. In the object create function itself, or afterwards using each property seperately. Heres an example that creates a command button and an option button using each method:

Break On

$Form = CreateObject("Kixtart.Form")

$Button1 = $Form.CommandButton("Click Me!",10,10,100,25)

$Button2 = $Form.OptionButton

$Button2.Caption = "No - Select Me!"

$Button2.Left = 10

$Button2.Top = 50

$Button2.Width = 100

$Button2.Height = 25

$Form.Show

While $Form.Visible

 $=Execute($Form.DoEvents())

Loop

Exit 1

How do I make the button do something ?

This is where the fun starts. To make the button do something when the user clicks it, you have to program the button OnClick event. You do this by “stuffing” kixtart code into the event property of the object itself. For example, lets say you want to change the background color of the form every time the user clicks a “Change Color” button. Here’s the code for that:

Break On

$Form = CreateObject("Kixtart.Form")

$Button1 = $Form.CommandButton("Change Color!")

$Button1.Center

$Button1.OnClick = "Button1_Click()"

$Form.Show

While $Form.Visible

 $=Execute($Form.DoEvents())

Loop

Exit 1

Function Button1_Click()

 $Form.BackColor = $Form.RGB(RND(255),RND(255),RND(255))

EndFunction

Whats going on here ? We stuffed a function call into the OnClick event of our button. Every time the button is clicked, kixtart executes a function call to Button1_Click(). Inside that function, we simply set the forms background color to some random color generated with the RGB and RND methods.

Kixforms Library - Object Reference

AddItem Method

Applies To

ListBox control.

Description

For a single-column list box, adds an item to the list.

Syntax

Object.AddItem (Item,Index)

Parameters

Item

Optional. A string containing the item or row to add. The number of the first item or row is 0; the number of the second item or row is 1, and so on.
Index

Optional. Number specifying the position within the object where the new item or row is placed.

Remarks

If you supply a valid value for Index, the AddItem method places the item or row at that position within the list. If you omit Index, the method adds the item or row at the end of the list.

The value of Index must not be greater than the value of the ListCount property.

Example

The following example adds and deletes the contents of a ListBox using the AddItem, RemoveItem, and SetFocus methods, and the ListIndex and ListCount properties.

Break On

$Form = CreateObject("Kixtart.Form")

$Form.ScaleWidth = 300

$Form.ScaleHeight = 200

$Form.Center

$ListBox1 = $Form.ListBox("")

$ListBox1.Left = 10

$ListBox1.Top = 10

$ListBox1.Width = 160

$ListBox1.Height = 160

$CommandButton1 = $Form.CommandButton("Add Item")

$CommandButton1.Width = 100

$CommandButton1.Top = 10

$CommandButton1.Right = 290

$CommandButton1.OnClick = "CommandButton1_Click()"

$CommandButton2 = $Form.CommandButton("Remove Item")

$CommandButton2.Width = 100

$CommandButton2.Top = 45

$CommandButton2.Right = 290

$CommandButton2.OnClick = "CommandButton2_Click()"

$EntryCount = 0

$Form.Show

While $Form.Visible

 $=Execute($Form.DoEvents)

Loop

Exit 1

Function CommandButton1_Click()

 $EntryCount = $EntryCount + 1

 $ListBox1.AddItem ("$EntryCount" + " - Selection")

EndFunction

Function CommandButton2_Click()

 $ListBox1.SetFocus

 ; Ensure ListBox contains list items.

 If $ListBox1.ListCount >= 1

 ; If no selection, choose last list item.

 If $ListBox1.ListIndex = -1

 $ListBox1.ListIndex = $ListBox1.ListCount - 1

 EndIf

 $ListBox1.RemoveItem ($ListBox1.ListIndex)

 EndIf

EndFunction

Alignment Property

Applies To

CheckBox control, OptionButton control

Description

Returns or sets the position of the caption relative to the control.

Syntax

Object.Alignment [= Number]

Settings

A numeric expression specifying the caption position. The valid settings for number are:

0 Right (Default) The caption is on the right, the control is on the left.

1 Left. The caption is on the left, the control is on the right.

Remarks

You can display the caption to the right or left of OptionButton and CheckBox controls. By default, the caption is left-aligned.

Example

The following example demonstrates the Alignment property used with two OptionButton controls and a CheckBox control. In this example, the user can change the alignment by clicking a ToggleButton.

Break On

$Form = CreateObject("Kixtart.Form")

$Form.ScaleWidth = 300

$Form.ScaleHeight = 200

$Form.Center()

$OptionButton1 = $Form.OptionButton("This is an OptionButton")

$OptionButton1.Left = 10

$OptionButton1.Top = 10

$OptionButton1.Width = 180

$OptionButton2 = $Form.OptionButton("This is another OptionButton")

$OptionButton2.Left = 10

$OptionButton2.Top = 40

$OptionButton2.Width = 180

$CheckBox1 = $Form.CheckBox("This is a CheckBox")

$CheckBox1.Left = 10

$CheckBox1.Top = 70

$CheckBox1.Width = 180

$ToggleButton1 = $Form.ToggleButton("Right Align")

$ToggleButton1.Top = 10

$ToggleButton1.Right = 290

$ToggleButton1.OnClick = "ToggleButton1_Click()"

$Form.Show

While $Form.Visible

 $=Execute($Form.DoEvents)

Loop

Exit 1

Function ToggleButton1_Click()

 If $ToggleButton1.Value = 1

 $ToggleButton1.Caption = "Left Align"

 $OptionButton1.Alignment = 1 ; LeftAlign

 $OptionButton2.Alignment = 1

 $CheckBox1.Alignment = 1

 Else

 $ToggleButton1.Caption = "Right Align"

 $OptionButton1.Alignment = 0 ; RightAlign

 $OptionButton2.Alignment = 0

 $CheckBox1.Alignment = 0

 EndIf

EndFunction

Autosize Property

Implemented at object creation time but not exposed as a property yet. See individual object creation methods for further details.

BackColor, ForeColor Properties

Applies To

CheckBox control, Frame control, Label control, ListBox control, OptionButton control, PictureBox control, TextBox control, Form object.

Description

Sets or returns the color of an object.

Syntax

Object.BackColor [= Number]

Object.ForeColor [= Number]

Settings

A numeric expression that determines the background or foreground color of an object. You can use any number that represents a valid color. You can also specify a color by using the RGB method with red, green, and blue color components. For example, you can specify yellow as the number value 65535 or when using the RGB method, as red, green, and blue color components 255, 255, 0.

Remarks

Use the BackColor and ForeColor properties for forms and controls to make them easy to read or to convey a special meaning. For example, if a text box reports the number of units in stock, you can change the color of the text when the value falls below the reorder level.

The valid range for a normal RGB color is 0 to 16,777,215 (&00FFFFFF). The high byte of a number in this range equals 0; the lower 3 bytes, from least to most significant byte, determine the amount of red, green, and blue, respectively. The red, green, and blue components are each represented by a number between 0 and 255 (&FF). If the high byte isn't 0, Kixforms uses the system colors, as defined in the user's Control Panel settings and by constants listed in the appendix of this manual.

If you set the BackColor property on a Form object or a PictureBox control, all text and graphics, including the persistent graphics, are erased. Setting the ForeColor property doesn't affect graphics or print output already drawn. On all other controls, the screen color changes immediately.

BackStyle Property

Not implemented yet.

BorderStyle Property

Applies To

Form object, Label control, Image control.

Description

Sets or returns the type of border used by a control or a form.

Syntax

Object.BorderStyle [= Number]

Settings

A numeric expression specifying the border style. For Forms, the valid settings for number are:

2 None. The form has no border or related border elements. The form isn't resizable.

3 Fixed. (Default) Includes a system menu box, title bar, and minimize button. The maximize button is disabled. Resizable only using minimize button.

4 Sizable. Resizable using any of the optional border elements listed for setting 1.

For Image, Label and PictureBox controls, the valid setting for number are:

5 None. (Default for Image and Label).

6 Single. (Default for PictureBox).

Cancel Property

Applies To

CommandButton control.

Description

Returns or sets a value indicating whether a command button is the Cancel button on a form.

Syntax

Object.Cancel [= Boolean]

Settings

A boolean expression specifying whether the object is the Cancel button. The valid settings for Boolean are:

7 False (Default). The CommandButton control isn't the Cancel button.

8 True. The CommandButton control is the Cancel button.

Remarks

Only one CommandButton on a form can be the Cancel button. Setting Cancel to True for one command button automatically sets it to False for all other objects on the form. When a CommandButton's Cancel property is set to True and the form is the active form, the user can choose the command button by clicking it, pressing ESC, or pressing ENTER when the button has the focus.

A typical use of Cancel is to give the user the option of canceling uncommitted changes and returning the form to its previous state.

A command button can be the Default button, or the Cancel button, but not both at the same time.

Caption Property

Applies To

CheckBox control, CommandButton control, Frame control, Label control, OptionButton control, Page object, Tab object, ToggleButton control, Form object.

Description

Returns or sets the descriptive text that appears on an object to identify or describe it.

Syntax

Object.Caption [= String]

Settings

A string expression that evaluates to the text displayed as the caption. The default setting for a control is a unique name based on the type of control. For example, CommandButton1 is the default caption for the first command button in a form.

Remarks

The text identifies or describes the object with which it is associated. For buttons and labels, the Caption property specifies the text that appears in the control. If a control's caption is too long, the caption is truncated. If a form's caption is too long for the title bar, the title is displayed with an ellipsis. The ForeColor property of the control determines the color of the text in the caption.

Center Method

Applies To

CheckBox control, CommandButton control, Frame control, OptionButton control, ToggleButton control, Form object.

Description

Centers an object.

Syntax

Object.Center
Remarks

For the toplevel form, centers against the screen. For subsequent forms, centers against the toplevel form.

CheckBox Control, CheckBox Method

Applies To

Form object, Frame control, PictureBox control
Description

Use a CheckBox to give the user a choice between two values such as Yes/No, True/False, or On/Off.
Syntax

CheckBox = Object.CheckBox(Caption,Left,Top,Width,Height)

Parameters

Caption

Optional. A string expression specifying the descriptive text that appears on the object to identify or describe it. See also Caption property.

Left

Optional. A number specifying the distance between the control and the left edge of the form that contains it. The default distance is 0 (zero). See also Left,Top properties.

Top

Optional. A number specifying the distance between the control and the top edge of the form that contains it. The default distance is 0 (zero). See also Left,Top properties.

Width

Optional. A number specifying the width of an object. If not specified or if set to zero, the width will be automatically calculated based on the size of the caption and the default font size. See also Height, Width properties.

Height

Optional. A number specifying the height of an object. If not specified or if set to zero, the height will be automatically calculated based on the size of the caption and the default font size. See also Height, Width properties.

Returns

A pointer to a CheckBox object.

Remarks

When the user selects a CheckBox, it displays a special mark (such as an X) and its current setting is Yes, True, or On; if the user does not select the CheckBox, it is empty and its setting is No, False, or Off.

A disabled CheckBox shows the current value, but is dimmed and does not allow changes to the value from the user interface.

Properties

Caption property, Enabled property, FontBold property, FontItalic property, FontName property, FontSize property, FontStrikethru property, FontUnderline property, FontWeight property, Height property, Left property, TabStop property, Tag property, Top property, Value property, Width property

Events

OnClick event, OnMouseDown event, OnMouseMove event, OnMouseUp event

Circle Method

Applies To

Form object, PictureBox control

Description

Draws a circle on an object.

Syntax

Object.Circle(X,Y,Radius)

Parameters

X

Required. A number indicating the horizontal x-coordinate of the center point of the circle

Y

Required. A number indicating the vertical y-coordinate of the center point of the circle

Radius

Required. A number indicating the radius of the circle.

Remarks

To fill a circle, set the FillColor and FillStyle properties of the form. Only a closed figure can be filled. Closed figures include circles and rectangles.

The width of the line used to draw the circle depends on the DrawWidth property setting. The way the circle is drawn on the background depends on the settings of the DrawMode and DrawStyle properties.

When you apply the Circle method, the CurrentX and CurrentY properties are set to the center point specified by the x and y arguments.

Clear Method

Applies To

ListBox control

Description

Removes all objects from an object or collection.

Syntax

Object.Clear

Remarks

For a ListBox, Clear removes all entries in the list.

See Also

AddItem method, RemoveItem method.

ComboBox Control, ComboBox Method

Will be implemented in Kixforms Build 8.

CommandButton Control, CommandButton Method

Applies To

Form object, Frame control, PictureBox control
Description

Starts, ends, or interrupts an action or series of actions.
Syntax

CommandButton = Object.CommandButton(Caption,Left,Top,Width,Height)

Parameters

Caption

Optional. A string expression specifying the descriptive text that appears on the object to identify or describe it. If omitted or set to blank, the default Caption is the class name of the object. See Caption property.

Left

Optional. A number specifying the distance between the control and the left edge of the form that contains it. The default distance is 0 (zero). See Left,Top properties.

Top

Optional. A number specifying the distance between the control and the top edge of the form that contains it. The default distance is 0 (zero). See Left,Top properties.

Width

Optional. A number specifying the width of an object. If not specified or if set to zero, the width will be automatically calculated based on the size of the caption and the default font size. See Height, Width properties.

Height

Optional. A number specifying the height of an object. If not specified or if set to zero, the height will be automatically calculated based on the size of the caption and the default font size. See Height, Width properties.

Returns

A pointer to a CommandButton object.

Remarks

The CommandButton control allows the user to click it to perform an action. When the button is clicked, it looks as if it is being pushed in and released. Whenever the user clicks a button, the OnClick event is invoked. You place code in the OnClick event property to perform any action you choose.

To display text on a CommandButton control, set the Caption property. If your text exceeds the width of the button, it will wrap to the next line. However, it will be clipped if the control cannot accommodate its overall height. The Caption property can contain an accelerator key, which allows a user to "click" the control by pressing the ALT key with the access key. The appearance of the text is controlled by the font properties and the TextAlign property.

A user can always choose a CommandButton by clicking it. To allow the user to choose it by pressing ENTER, set the Default property to True. To allow the user to choose the button by pressing ESC, set the Cancel property to True.

Properties

Cancel property, Caption property, Default property, Enabled property, FontBold property, FontItalic property, FontName property, FontSize property, FontStrikethru property, FontUnderline property, FontWeight property, Height property, Left property, TabStop property, Tag property, Top property, Value property, Width property

Events

OnClick event, OnMouseDown event, OnMouseMove event, OnMouseUp event

CurrentX, CurrentY Properties

Applies To

Form object, PictureBox control
Description

You can use the CurrentX and CurrentY properties to return or set the horizontal and vertical coordinates for the starting position of the next printing and drawing method on a form. For example, you can use these properties to determine where the center point of a circle is drawn.

Syntax

Object.CurrentX [= Number]

Object.CurrentY [= Number]

Settings

The CurrentX property is a numeric expression specifying the horizontal coordinate of the next printing or drawing method.

The CurrentY property is a expression specifying the vertical coordinate of the next printing or drawing method.

The coordinates are measured from the upper-left corner of the form that contains the reference to the CurrentX or CurrentY property. The CurrentX property setting is 0 at the form's left edge, and the CurrentY property setting is 0 at its top edge.

Remarks

When you use the following graphics methods, the CurrentX and CurrentY property settings are changed as indicated.

Method

Sets CurrentX, CurrentY properties to

Circle

The center of the object.

Line

The end point of the line (the x2, y2 coordinates).

Rectangle

Print

The next print position.

PrintXY

See Also

Circle method, DrawMode property, DrawStyle property, Left, Top properties, Line method, Print,PrintXY method, ScaleHeight, ScaleWidth properties.

Default Property

Applies To

CommandButton control.

Description

Returns or sets a value that designates the default command button on a form.

Syntax

Object.Default [= Boolean]

Settings

A boolean expression that specifies whether this object is the default. The valid settings for Boolean are:

9 False. The CommandButton is not the default button (default).

10 True. The CommandButton is the default button.

Remarks

For a form or dialog box that supports an irreversible action such as a delete operation, make the Cancel button the default command button by setting its Default property to True.

Only one command button on a form can be the default command button. When Default is set to True for one command button, it's automatically set to False for all other command buttons on the form. When the command button's Default property setting is True and its parent form is active, the user can choose the command button (invoking its OnClick event) by pressing ENTER. Any other control with the focus doesn't receive a keyboard event (KeyDown, KeyPress, or KeyUp) for the ENTER key unless the user has moved the focus to another command button on the same form. In this case, pressing ENTER chooses the command button that has the focus instead of the default command button.

See Also

Cancel property.

DoEvents Method

Applies To

Form object

Description

Processes events from the windows message queue.

Syntax

Object.DoEvents(Flag)

Parameters

Flag

A boolean expression specifying whether to wait for an event to occur or, if there are no pending events, return control immediately to your script. The settings for Flag are as follows:

11 Wait for event (Default).

12 Do not wait for event

Returns

A string containing the contents of a triggered event.

Remarks

The DoEvents method processes all events in the windows message queue. It also yields execution so that the operating system can process events from other currently running applications. It returns a string representing the contents of a event property (when triggered).

DrawStyle Property

Not implemented yet.

DrawWidth Property

Applies To

Form object, PictureBox control.

Description

Returns or sets the line width for output from graphics methods.

Syntax

Object.DrawWidth [= Number]

Settings

A numeric expression from 1 through 32,767. This value represents the width of the line in pixels. The default is 1; that is, 1 pixel wide.

Remarks

Increase the value of this property to increase the width of the line. If the DrawWidth property setting is greater than 1, DrawStyle property settings 1 through 4 produce a solid line (the DrawStyle property value isn't changed). Setting DrawWidth to 1 allows DrawStyle to produce the results shown in the DrawStyle property table.

Enabled Property

Applies To

CheckBox control, CommandButton control, Frame control, Image control, Label control, ListBox control, OptionButton control, TextBox control, ToggleButton control.

Description

Returns or sets a value that determines whether the form or control can respond to user-generated events.

Syntax

Object.Enabled [= Boolean]

Settings

A boolean expression specifying whether the object can respond to user-generated events. The valid settings for Boolean are:

13 False. The user cannot interact with the control by using the mouse, keystrokes, accelerators, or hot keys. The control is generally still accessible through code.

14 True. The control can receive the focus and respond to user-generated events, and is accessible through code (default).

Remarks

Use the Enabled property to enable and disable controls. A disabled control appears dimmed, while an enabled control does not. Also, if a control displays a bitmap, the bitmap is dimmed whenever the control is dimmed. If Enabled is False for an Image, the control does not initiate events but does not appear dimmed.

You can combine the settings of the Enabled and the TabStop properties to prevent the user from selecting a command button with TAB, while still allowing the user to click the button. Setting TabStop to False means that the command button won't appear in the tab order. However, if Enabled is True, then the user can still click the command button, as long as TakeFocusOnClick is set to True.

If a Frame is disabled, all controls it contains are disabled. Clicking a disabled ListBox does not initiate the OnClick event.

FillColor Property

Applies To

Form object, PictureBox control

Description

Returns or sets the the color that fills in boxes and circles drawn on forms with the Rectangle and Circle methods.

Syntax

Object.FillColor [= Number]

Settings

A numeric expression specifying the fill color for all rectangles and circles.

Remarks

You can use the RGB method of form objects to set this property.

FillStyle Property

Applies To

Form object, PictureBox control

Description

You can use the FillStyle property to specify whether a circle or rectangle drawn by the Circle or Rectangle method on a form is transparent, opaque, or filled with a pattern.

Syntax

Object.FillStyle [= Number]

Settings

A numeric expression specifying the fill style. The FillStyle property uses the following number settings:

15 Transparent (default). No fill, transparent.

16 Solid. Solid fill.

17 Horizontal Line. Lines drawn from left to right every 8 pixels.

18 Vertical Line. Lines drawn up and down every 8 pixels.

19 Upward Diagonal - Diagonal lines drawn from upper left to lower right. The lines are drawn every 8 pixels.

20 Downward Diagonal. Diagonal lines that are drawn from lower left to upper right. The lines are drawn every 8 pixels.

21 Cross. Crosshatched lines.

22 Diagonal - Diagonally crosshatched lines.

Remarks

When the FillStyle property is set to 0, the interior of the circle or line is transparent and has the color of the report behind it. When the FillStyle property is set to 1, a circle or line has the color set by the FillColor property.

See Also

Circle method, FillColor property, Rectangle method

FontBold, FontItalic, FontStrikethru, FontUnderline, FontWeight Properties

Applies To

CheckBox control, CommandButton control, Frame control, Label control, ListBox control, OptionButton control, PictureBox control, TextBox control, ToggleButton control, Form object.

Description

Returns or sets the the visual attributes of text displayed on a control or printed on a form.

Syntax

Object.FontBold [= Boolean]

Object.FontItalic [= Boolean]

Object.FontStrikeThru [= Boolean]

 Object.FontUnderline [= Boolean]

Object.FontWeight [= Number]

Settings

A Boolean expression specifying the style. The settings for boolean are:

23 False (Default). The style is disabled.

24 True. The style is enabled.

The FontWeight property accepts a numeric expression from 0 to 1000. A value of zero allows the system to pick the most appropriate weight. A value from 1 to 1000 indicates a specific weight, where 1 represents the lightest type and 1000 represents the darkest type.

Remarks

These properties define the visual characteristics of text. The FontBold property determines whether text is normal or bold. The FontItalic property determines whether text is normal or italic. The FontUnderline property determines whether text is underlined. The FontStrikeThru property determines whether the text appears with strikethrough marks. The FontWeight property determines the darkness of the type.

The font's appearance on screen and in print may differ, depending on your computer and printer. If you select a font that your system can't display with the specified attribute or that isn't installed, Windows substitutes a similar font. The substitute font will be as similar as possible to the font originally requested.

Changing the value of FontBold also changes the value of FontWeight. Setting FontBold to True sets FontWeight to 700; setting FontBold to False sets FontWeight to 400. Conversely, setting FontWeight to anything over 550 sets FontBold to True; setting FontWeight to 550 or less sets FontBold to False.

The default point size is determined by the operating system.

Example

The following example demonstrates the FontBold, FontItalic, FontSize, FontStrikeThru, FontUnderline, and FontWeight properties related to fonts.

This example contains a Label named Label1. Four ToggleButton controls named ToggleButton1 through ToggleButton4. A second Label and a TextBox named Label2 and TextBox1.

$Form = CreateObject("Kixtart.Form")

$Form.ScaleWidth = 300

$Form.ScaleHeight = 200

$Form.Center()

$ToggleButton1 = $Form.ToggleButton("Bold On")

$ToggleButton1.Top = 10

$ToggleButton1.Width = 100

$ToggleButton1.Right = 290

$ToggleButton1.Value = 0 ; False

$ToggleButton1.OnClick = "ToggleButton1_Click()"

$ToggleButton2 = $Form.ToggleButton("Italic Off")

$ToggleButton2.Top = 40

$ToggleButton2.Width = 100

$ToggleButton2.Right = 290

$ToggleButton2.Value = 0

$ToggleButton2.OnClick = "ToggleButton2_Click()"

$ToggleButton3 = $Form.ToggleButton("StrikeThrough Off")

$ToggleButton3.Top = 70

$ToggleButton3.Width = 100

$ToggleButton3.Right = 290

$ToggleButton3.Value = 0

$ToggleButton3.OnClick = "ToggleButton3_Click()"

$ToggleButton4 = $Form.ToggleButton("Underline Off")

$ToggleButton4.Top = 100

$ToggleButton4.Width = 100

$ToggleButton4.Right = 290

$ToggleButton4.Value = 0

$ToggleButton4.OnClick = "ToggleButton4_Click()"

$Label1 = $Form.Label("Label1")

$Label1.Left = 10

$Label1.Top = 10

$Label1.Width = 100

$Label1.Height = 50

$Label1.BorderStyle = 1 ; Single

$Label1.FontName = "Arial"

$Label1.FontSize = 22

$Label2 = $Form.Label("Font Weight")

$Label2.Left = 10

$Label2.Top = 70

$Label2.Width = 100

$TextBox1 = $Form.TextBox

$TextBox1.Left = 10

$TextBox1.Top = 100

$TextBox1.Width = 100

$TextBox1.Height = 20

$TextBox1.BackColor = 0

$TextBox1.Text = $Label1.FontWeight

$TextBox1.Enabled = 0 ; False

$Form.Show

While $Form.Visible

 $=Execute($Form.DoEvents)

Loop

Exit 1

Function ToggleButton1_Click()

 If $ToggleButton1.Value = 1

 $Label1.FontBold = 1 ; True

 $ToggleButton1.Caption = "Bold On"

 Else

 $Label1.FontBold = 0 ; False

 $ToggleButton1.Caption = "Bold Off"

 EndIf

 $TextBox1.Text = $Label1.FontWeight

EndFunction

Function ToggleButton2_Click()

 If $ToggleButton2.Value

 $Label1.FontItalic = 1 ; True

 $ToggleButton2.Caption = "Italic On"

 Else

 $Label1.FontItalic = 0 ; False

 $ToggleButton2.Caption = "Italic Off"

 EndIf

EndFunction

Function ToggleButton3_Click()

 If $ToggleButton3.Value = 1

 $Label1.FontStrikethru = 1 ; True

 $ToggleButton3.Caption = "StrikeThrough On"

 Else

 $Label1.FontStrikethru = 0 ; False

 $ToggleButton3.Caption = "StrikeThrough Off"

 EndIf

EndFunction

Function ToggleButton4_Click()

 If $ToggleButton4.Value = 1 ; True

 $Label1.FontUnderline = 1 ; True

 $ToggleButton4.Caption = "Underline On"

 Else

 $Label1.FontUnderline = 0 ; False

 $ToggleButton4.Caption = "Underline Off"

 EndIf

EndFunction
FontName Property

Applies To

CheckBox control, ComboBox control, CommandButton control, Frame control, Label control, ListBox control, MultiPage control, OptionButton control, PictureBox control, ScrollBar control, SpinButton control, TabStrip control, TextBox control, ToggleButton control, Form object.

Description

Returns or sets the font used to display text in an object or in subsequent drawing operations

Syntax

Object.FontName [= String]

Settings

A string expression specifying the font name to use.

Remarks

The default for this property is determined by the system. Fonts available vary depending on your system configuration, display devices, and printing devices. Font-related properties can be set only to values for which fonts exist.

In general, you should change FontName before setting size and style attributes with the FontSize, FontBold, FontItalic, FontStrikethru, and FontUnderline properties.

FontSize Property

Applies To

CheckBox control, ComboBox control, CommandButton control, Frame control, Label control, ListBox control, MultiPage control, OptionButton control, PictureBox control, ScrollBar control, SpinButton control, TabStrip control, TextBox control, ToggleButton control, Form object.

Description

Returns or sets the height of the font used to display text in an object or in a subsequent print operation.

Syntax

Object.FontSize [= Number]

Settings

A numeric expression specifying the font size to use, in points.

Remarks

Use this property to format text in the font size you want. The default is determined by the system. To change the default, specify the size of the font in points. The maximum value for FontSize is 2160 points.

Note: Fonts available vary depending on your system configuration, display devices, and printing devices. Font-related properties can be set only to values for which fonts exist.

In general, you should change the FontName property before you set size and style attributes with the FontSize, FontBold, FontItalic, FontStrikethru, and FontUnderline properties. However, when you set TrueType fonts to smaller than 8 points, you should set the point size with the FontSize property, then set the FontName property, and then set the size again with the FontSize property. The Microsoft Windows operating environment uses a different font for TrueType fonts that are smaller than 8 points.

ForeColor Property

See BackColor,ForeColor Properties

Form Object

Description

A Form is a window or dialog box that makes up part of an application's user interface.

Syntax

Form = CreateObject("Kixtart.Form")
Remarks

Forms have properties that determine appearance such as position, size, and color; and aspects of their behavior.

Forms can also respond to events initiated by a user or triggered by the system. For example, you can write code in the OnMouseMove event of the Form to track the current location of the mouse.

In addition to properties and events, you can use methods to manipulate user forms using code. For example, you can use the Move method to change the location and size of a Form.

When designing user forms, set the BorderStyle property to define borders, and set the Caption property to put text in the title bar. In code, you can use the Hide and Show methods to make a Form invisible or visible at run time.

You can add controls to a Form using the embedded control creation methods. For example, to add a CommandButton to a form, use code similar to the following:

$cmdExit = $Form.CommandButton("Exit",10,10,100,25)

Properties

BackColor property, BorderStyle property, Caption property, CurrentX property, CurrentY property, DrawWidth property, FillColor property, FillStyle property, FontBold property, FontItalic property, FontName property, FontSize property, FontStrikethru property, FontUnderline property, FontWeight property, ForeColor property, Height property, hWnd property, Left property, MouseButton property, MouseX property, MouseY property, ScaleHeight property, ScaleWidth property, Screen object, Tag property, Top property, Visible property, Width property

Methods

Center method, CheckBox method, Circle method, CommandButton method, DoEvents method, Frame method, Hide method, Label method, Line method, ListBox method, MsgBox method, OptionButton method, PictureBox method, Print method, PrintXY method, Rectangle method RGB method, Show method, TextBox method, ToggleButton method

Events

OnClick event, OnMouseDown event, OnMouseMove event, OnMouseUp event

Frame Control, Frame Method

Applies To

Form object, PictureBox control, Frame control
Description

Creates a functional and visual control group.

Syntax

Frame = Object.Frame(Caption,Left,Top,Width,Height)

Parameters

Caption

Optional. A string expression specifying the descriptive text that appears on the object to identify or describe it. See Caption property.

Left

Optional. A number specifying the distance between the control and the left edge of the form that contains it. The default distance is 0 (zero). See Left,Top properties.

Top

Optional. A number specifying the distance between the control and the top edge of the form that contains it. The default distance is 0 (zero). See Left,Top properties.

Width

Optional. A number specifying the width of an object. If not specified or if set to zero, the width will be automatically calculated based on the size of the caption and the default font size. See Height, Width properties.

Height

Optional. A number specifying the height of an object. If not specified or if set to zero, the height will be automatically calculated based on the size of the caption and the default font size. See Height, Width properties.

Returns

A pointer to a Frame control.

Remarks

All option buttons in a Frame are mutually exclusive, so you can use the Frame to create an option group. You can also use a Frame to group controls with closely related contents. For example, in an application that processes customer orders, you might use a Frame to group the name, address, and account number of customers.

You can also use a Frame to create a group of toggle buttons, but the toggle buttons are not mutually exclusive.

Properties

Caption property, Enabled property, FontBold property, FontItalic property, FontName property, FontSize property, FontStrikethru property, FontUnderline property, FontWeight property, Height property, Left property, TabStop property, Tag property, Top property, Value property, Width property

Methods

Events

OnClick event, OnMouseDown event, OnMouseMove event, OnMouseUp event

Height, Width Properties

Applies To

CheckBox control, ComboBox control, CommandButton control, Frame control, Image control, Label control, ListBox control, MultiPage control, OptionButton control, PictureBox control, ScrollBar control, SpinButton control, TabStrip control, TextBox control, ToggleButton control, Form object.

Description

Returns or sets the height or width, in points, of an object.

Syntax

Object.Height [= Number]

Object.Width [= Number]

Settings

A numeric expression specifying the dimension of an object. For forms and controls, this is measured as the external dimension of the object, including any borders, title bar and caption. For the Screen object, this property is read-only and returns the dimensions of the physical screen.

Remarks

The Height and Width properties are automatically updated when you move or size a control. If you specify a setting for the Left or Top property that is less than zero, that value will be used to calculate the height or width of the control, but a portion of the control will not be visible on the form.

If you move a control from one part of a form to another, the setting of Height or Width only changes if you size the control as you move it. The settings of the control's Left and Top properties will change to reflect the control's new position relative to the edges of the form that contains it.

The value assigned to Height or Width must be greater than or equal to zero. For most systems, the recommended range of values is from 0 to +32,767. Higher values may also work depending on your system configuration.

Use the Left, Top, Height, and Width properties for operations based on an object's external dimensions, such as moving or resizing. Use the ScaleHeight and ScaleWidth properties for operations based on an object's internal dimensions, such as drawing or moving objects that are contained within the object. The Scale-related properties apply only to PictureBox and Form objects.

Image Control, Image Method

Applies To

Form object, PictureBox control, Frame control
Description

Displays a picture on a form.

Syntax

Image = Object.Image(Picture,Left,Top,Width,Height)

Parameters

Picture

Optional. A string expression specifying the relative or fully qualified pathname of the bitmap file to display.

Left

Optional. A number specifying the distance between the control and the left edge of the form that contains it. The default distance is 0 (zero). See Left,Top properties.

Top

Optional. A number specifying the distance between the control and the top edge of the form that contains it. The default distance is 0 (zero). See Left,Top properties.

Width

Optional. A number specifying the width of an object. If not specified or if set to zero, the width will be automatically calculated based on the width of the picture.

Height

Optional. A number specifying the height of an object. If not specified or if set to zero, the height will be automatically calculated based on the height of the picture.

Returns

A pointer to an Image control.

Remarks

The Image lets you display a picture as part of the data in a form. For example, you might use an Image to display employee photographs in a personnel form.

The Image lets you crop, size, or zoom a picture, but does not allow you to edit the contents of the picture. For example, you cannot use the Image to change the colors in the picture, to make the picture transparent, or to refine the image of the picture. You must use image editing software for these purposes.

The Image supports the following file formats: *.bmp
Properties

Enabled property, Height property, Left property, Picture property, PictureAlignment property, Tag property, Top property, Visible property, Width property.

Methods

Events

OnClick event, OnDoubleClick event, OnMouseDown event, OnMouseUp event, OnMouseMove event.

Label Control, Label Method

Applies To

Form object, Frame control, PictureBox control
Description

A Label control on a form displays descriptive text such as titles, captions, or brief instructions.
Syntax

Label = Object.Label(Caption, Left, Top, Width, Height)

Parameters

Caption

Optional. A string expression specifying the descriptive text that appears on the object to identify or describe it. See Caption property.

Left

Optional. A number specifying the distance between the control and the left edge of the form that contains it. The default distance is 0 (zero). See Left,Top properties.

Top

Optional. A number specifying the distance between the control and the top edge of the form that contains it. The default distance is 0 (zero). See Left,Top properties.

Width

Optional. A number specifying the width of an object. If not specified or if set to zero, the width will be automatically calculated based on the size of the caption and the default font size. See Height, Width properties.

Height

Optional. A number specifying the height of an object. If not specified or if set to zero, the height will be automatically calculated based on the size of the caption and the default font size. See Height, Width properties.

Returns

A pointer to a Label control.

Remarks

Label controls are used to identify objects on a form — to provide a description of what a certain control will do if clicked, for example, or to display information in response to a run-time event or process in your application. For example, you can use labels to add descriptive captions to text boxes, list boxes, combo boxes, and so on. You can also write code that changes the text displayed by a label in response to events at run time. For example, if your application takes a few minutes to process a change, you can display a processing-status message in a label.

The text displayed in a label is contained in the Caption property. The Alignment property allows you to set the alignment of the text within the label.

Tip: Because the Label control cannot receive the focus, it can also be used to create accelerator keys for other controls. An accelerator key allows a user to select the other control by pressing the ALT key with the accelerator key.

Properties

Alignment property, BackColor property, BorderStyle property, Caption property, Enabled property, FontBold property, FontItalic property, FontName property, FontSize property, FontStrikethru property, FontUnderline property, FontWeight property, ForeColor property, Height property, Left property, Tag property, Top property, Visible property, Width property

Events

OnClick event, OnMouseDown event, OnMouseMove event, OnMouseUp event

Left, Top Properties

Applies To

CheckBox control, CommandButton control, Frame control, Image control, Label control, ListBox control, OptionButton control, PictureBox control, TextBox control, ToggleButton control, Form object.

Description

Returns or sets the distance between a control and the left or top edge of the form that contains it.

Syntax

Object.Left [= Number]

Object.Top [= Number]

Settings

A numeric expression specifying the coordinates of the object. Setting the Left or Top property to 0 places the control's edge at the left or top edge of its container.

Remarks

For most systems, the recommended range of values for Left and Top is from 32,767 to +32,767. Other values may also work depending on your system configuration. For a ComboBox, values of Left and Top apply to the text portion of the control, not to the list portion. When you move or size a control, its new Left setting is automatically entered in the property sheet. When you print a form, the control's horizontal or vertical location is determined by its Left or Top setting.

See Also

Height, Width properties.

ListBox Control, ListBox Method

Applies To

Form object, PictureBox control, Frame control
Description

A ListBox control displays a list of items from which the user can select one or more.

Syntax

ListBox = Object.ListBox(Items,Left,Top,Width,Height)

Parts

Items

Optional. Not implemented, use null string.

Left

Optional. A number specifying the distance between the control and the left edge of the form that contains it. The default distance is 0 (zero). See Left,Top properties.

Top

Optional. A number specifying the distance between the control and the top edge of the form that contains it. The default distance is 0 (zero). See Left,Top properties.

Width

Optional. A number specifying the width of an object. If not specified or if set to zero, the width will be automatically calculated based on the size of the caption and the default font size. See Height, Width properties.

Height

Optional. A number specifying the height of an object. If not specified or if set to zero, the height will be automatically calculated based on the size of the caption and the default font size. See Height, Width properties.

Returns

A pointer to a ListBox control.

Remarks

If the total number of items in a ListBox exceeds the number that can be displayed, a scroll bar is automatically added to the ListBox control. When the MultiColumn property is set to true, the list box displays items in multiple columns and a horizontal scroll bar appears. When the MultiColumn property is set to false, the list box displays items in a single column and a vertical scroll bar appears. When ScrollAlwaysVisible is set to true, the scroll bar appears regardless of the number of items. The SelectionMode property determines how many list items can be selected at a time.

The ListIndex property returns an integer value that corresponds to the first selected item in the list box. You can programmatically change the selected item by changing the ListIndex value in code; the corresponding item in the list will appear highlighted on the Form. If no item is selected, the ListIndex value is -1. If the first item in the list is selected, then the ListIndex value is 0. When multiple items are selected, the ListIndex value reflects the selected item that appears first in the list. The value of the ListCount property is always one more than the largest ListIndex value.

The Text property is similar to ListIndex, but returns the item itself, always as a string value.

Properties

BackColor property, FontBold property, FontItalic property, FontName property, FontSize property, FontStrikethru property, FontUnderline property, FontWeight property, ForeColor property, Height property, Left property, ListIndex property, Tag property, Top property, Text property, Visible property, Width property

Methods

AddItem method, Clear method, RemoveItem method

Events

OnClick event

ListCount Property

Applies To

ListBox control.

Description

Returns the number of list entries in the control.

Syntax

Object.ListCount

Remarks

The ListCount property is read-only. ListCount is the number of rows over which you can scroll. ListRows is the maximum to display at once. ListCount is always one greater than the largest value for the ListIndex property, because index numbers begin with 0 and the count of items begins with 1. If no item is selected, ListIndex is –1.

See Also

ListIndex property

ListIndex Property

Applies To

ListBox control.

Description

Sets or returns the currently selected item in a ListBox.

Syntax

Object.ListIndex [= Number]
Settings

A numeric expression specifying the currently selected item in the control.

Remarks

The ListIndex property contains an index of the selected row in a list. Values of ListIndex range from –1 to one less than the total number of rows in a list (that is, ListCount – 1). When no rows are selected, ListIndex returns –1. When the user selects a row in a ListBox or ComboBox, the system sets the ListIndex value. The ListIndex value of the first row in a list is 0, the value of the second row is 1, and so on.

See Also
ListCount property

ListRows Property

Not implemented yet.

Locked Property

Not implemented yet.

MaxButton Property

Applies To

Form object

Description

Sets a value indicating whether a form has a Maximize button.

Syntax

Object.MaxButton = Boolean

Settings
A boolean expression specify whether this object has a Maximize button. The valid settings for Boolean are:

25 False The form doesn't have a Maximize button.

26 True (Default) The form has a Maximize button.

Remarks

A Minimize button enables users to minimize a form window to an icon. To display a Minimize button, you must also set the form's BorderStyle property to either 1 (Fixed) or 2 (Sizable).

Write-Only.

MinButton Property

Applies To

Form object

Description

Sets a value indicating whether a form has a Minimize button.

Syntax

Object.MinButton = Boolean

Settings
A boolean expression specify whether this object has a Minimize button. The valid settings for Boolean are:

27 False The form doesn't have a Minimize button.

28 True (Default) The form has a Minimize button.

Remarks

A Minimize button enables users to minimize a form window to an icon. To display a Minimize button, you must also set the form's BorderStyle property to either 1 (Fixed) or 2 (Sizable).

Write-only.

MultiLine Property

Applies To

TextBox control.

Description

Specifies whether a control can accept and display multiple lines of text.

Syntax

Object.MultiLine [= Boolean]

Settings

A boolean expression specifying whether the control supports more than one line of text. The settings for Boolean are:

29 False. The text is not displayed across multiple lines.

30 True. The text is displayed across multiple lines (default).

Remarks

A multiline TextBox allows absolute line breaks and adjusts its quantity of lines to accommodate the amount of text it holds. If needed, a multiline control can have vertical scroll bars.

A single-line TextBox doesn't allow absolute line breaks and doesn't use vertical scroll bars.

Single-line controls ignore the value of the WordWrap property.

Note: Insure that the MultiLine property is set prior to writing data to the control. If you change the MutiLine property later, all text in the control will be lost. This behavior will be corrected in a future release.

OnClick Event

Applies To

CheckBox control, ComboBox control, CommandButton control, Image control, Label control, OptionButton control, PictureBox control, ToggleButton control, Form object.

Description

The OnClick event occurs when the user presses and then releases a mouse button over an object.

Remarks

To bind a function to this event, set the OnClick event to the name of the function.

On a form, this event occurs when the user clicks a blank area on the form.

For a control, this event occurs when the user:

31 Clicks a control with the left mouse button. Clicking a control with the right or middle mouse button does not trigger this event.

32 Selects an item in a combo box or list box, either by pressing the arrow keys and then pressing the ENTER key or by clicking the mouse button.

33 Presses SPACEBAR when a command button, check box, option button, or toggle button has the focus.

34 Presses the ENTER key on a form that has a command button whose Default property is set to Yes.

35 Presses the ESC key on a form that has a command button whose Cancel property is set to Yes.

36 Presses a control's accelerator key. For example, if a command button's Caption property is set to &Go, pressing ALT+G triggers the event.

Typically, you attach a OnClick event function to a command button to carry out commands and command-like actions. For the other applicable controls, use this event to trigger actions in response to one of the occurrences discussed earlier in this topic.

Double-clicking a control causes both the OnDoubleClick and OnClick events to occur. For command buttons, double-clicking triggers the following events, in this order:

OnMouseDown OnMouseUp OnClick OnDoubleClick OnClick

Tip: To distinguish between the left, right, and middle mouse buttons, use the OnMouseDown and OnMouseUp events.

OnMouseDown, OnMouseUp Events

Applies To

CheckBox control, ComboBox control, CommandButton control, Image control, Label control, OptionButton control, PictureBox control, ToggleButton control, Form object.

Description

The OnMouseDown event occurs when the user presses a mouse button. The OnMouseUp event occurs when the user releases a mouse button.

Remarks

To bind a function to these events, set the OnMouseUp or OnMouseDown event to the name of the function.

You can use an OnMouseDown or OnMouseUp event to specify what happens when a particular mouse button is pressed or released. Unlike the OnClick and OnDoubleClick events, the OnMouseDown and OnMouseUp events enable you to distinguish between the left, right, and middle mouse buttons. You can also write code for mouse-keyboard combinations that use the SHIFT, CTRL, and ALT keys.

To cause a OnMouseDown or OnMouseUp event for a form to occur, press the mouse button in a blank area on the form.

If a mouse button is pressed while the pointer is over a form or control, that object receives all mouse events up to and including the last OnMouseUp event.

If mouse buttons are pressed in succession, the object that receives the mouse event after the first press receives all mouse events until all buttons are released.

To respond to an event caused by moving the mouse, you use a OnMouseMove event.

OnMouseMove Event

Applies To

CheckBox control, ComboBox control, CommandButton control, Image control, Label control, OptionButton control, PictureBox control, ToggleButton control, Form object.

Description

The OnMouseMove event is generated continually as the mouse pointer moves over objects.

Remarks

To bind a function to the OnMouseMove event, set the OnMouseMove event property to the name of the function.

Unless another object generates a mouse event, an object recognizes a OnMouseMove event whenever the mouse pointer is positioned within its borders.

To cause an OnMouseMove event for a form to occur, move the mouse pointer over a blank area.

Moving a form can trigger an OnMouseMove event even if the mouse is stationary. OnMouseMove events are generated when the form moves underneath the pointer.

If a function moves a form in response to a OnMouseMove event, the event can cascade (that is, continually generate OnMouseMove events).

If two controls are very close together, and you move the mouse pointer quickly over the space between them, the OnMouseMove event may not occur for the space (for example, this might be the OnMouseMove event for the form section). In such cases, you may need to respond to the OnMouseMove event in the contiguous control, as well as in the form section.

To execute a function in response to pressing and releasing the mouse buttons, you use the OnMouseDown and OnMouseUp events.

OptionButton Control, OptionButton Method

Applies To

Form object, PictureBox control, Frame control
Description

Shows the selection status of one item in a group of choices.

Syntax

OptionButton = Object.OptionButton(Caption,Left,Top,Width,Height)

Parameters

Caption

Optional. A string expression specifying the descriptive text that appears on the object to identify or describe it. See Caption property.

Left

Optional. A number specifying the distance between the control and the left edge of the form that contains it. The default distance is 0 (zero). See Left,Top properties.

Top

Optional. A number specifying the distance between the control and the top edge of the form that contains it. The default distance is 0 (zero). See Left,Top properties.

Width

Optional. A number specifying the width of an object. If not specified or if set to zero, the width will be automatically calculated based on the size of the caption and the default font size. See Height, Width properties.

Height

Optional. A number specifying the height of an object. If not specified or if set to zero, the height will be automatically calculated based on the size of the caption and the default font size. See Height, Width properties.

Returns

A pointer to an OptionButton.

Remarks

Usually, OptionButton controls are used in an option group to display options from which the user selects only one. You group OptionButton controls by drawing them inside a container such as a Frame control, a PictureBox control, or a Form. To group OptionButton controls in a Frame or PictureBox, draw the Frame or PictureBox first, and then draw the OptionButton controls inside. All OptionButton controls within the same container act as a single group.

While OptionButton controls and CheckBox controls may appear to function similarly, there is an important difference: When a user selects an OptionButton, the other OptionButton controls in the same group are automatically unavailable. In contrast, any number of CheckBox controls can be selected.

Properties

Caption property, Default property, Enabled property, FontBold property, FontItalic property, FontName property, FontSize property, FontStrikethru property, FontUnderline property, FontWeight property, Height property, Left property, TabStop property, Tag property, Top property, Value property, Width property

Methods

Events

OnClick eventOnMouseDown event, OnMouseMove event, OnMouseUp event.

PasswordChar Property

Applies To

TextBox control.

Description

Specifies whether placeholder characters are displayed instead of the characters actually entered in a TextBox.

Syntax

Object.PasswordChar [= String]

Settings

Optional. A string expression specifying the placeholder character.

Remarks

You can use the PasswordChar property to protect sensitive information, such as passwords or security codes. The value of PasswordChar is the character that appears in a control instead of the actual characters that the user types. If you don't specify a character, the control displays the characters that the user types.

Picture Property

Applies To

Image control, PictureBox control, Form object.

Description

Sets the bitmap to display on an object.

Syntax

Object.Picture = String

Settings

A string specifying the filename of the bitmap to display.

Remarks

You can use the Picture property to specify a bitmap to be displayed on a image control or as a background picture on a form.

You can create custom bitmaps by using Microsoft Paintbrush or another application that creates bitmap files. A bitmap file must have a .bmp extension.

The Picture property is write-only in this release.

PicturePosition Property

Not implemented in this release.

Print, PrintXY Methods

Applies To

Form object, PictureBox control

Description

The Print method prints text on an object using the current color and font.

Syntax

Object.Print(String)

Object.PrintXY(X,Y,String)

Parameters

String

Required. The string expression to print.

X

Required. A number specify the x-coordinate (left/horizontal) position of the starting point of the string.

Y

Required. A number specify the y-coordinate (top/vertical) position of the starting point of the string.

Remarks

Print: The text specified by the string argument is printed on the object starting at the position indicated by the CurrentX and CurrentY property settings.

PrintXY: The text specified by the string argument is printed on the object starting at the position indicated by the x and y arguments. The values of the CurrentX and CurrentY property settings are adjusted during this operation.

Because the Print method usually prints with proportionally spaced characters, it's important to remember that there's no correlation between the number of characters printed and the number of fixed-width columns those characters occupy. For example, a wide letter (such as W) occupies more than one fixed-width column, whereas a narrow letter (such as I) occupies less. You should make sure that your tabular columns are positioned far enough apart to accommodate the text you wish to print. Alternately, you can print with a fixed-pitch font (such as Courier) to ensure that each character uses only one column.

PSet Method

Applies To

Form object, PictureBox control

Description

Sets a pixel on a form to a specified color.

Syntax

Object.PSet(X,Y,Color)

Parameters

X

Required. A number specify the x-coordinate (left/horizontal) position of the pixel.

Y

Required. A number specify the y-coordinate (top/vertical) position of the pixel.

Color

Optional. A number indicating the RGB (red-green-blue) color to set the pixel to. If this argument is omitted, the value of the ForeColor property is used. You can also use the RGB method to specify the color.

RGB Method

Applies To

Form object, PictureBox control

Description

Returns a number representing an RGB color value.

Syntax

Color = Object.RGB(Red, Green, Blue)

Parameters

Red

Required. A number in the range 0-255 representing the red component of the color.

Green

Required. A number in the range 0-255 representing the green component of the color.
Blue

Required. A number in the range 0-255 representing the blue component of the color.

Returns

A number representing an RGB color value

Remarks

Object methods and properties that accept a color specification expect that specification to be a number representing an RGB color value. An RGB color value specifies the relative intensity of red, green, and blue to cause a specific color to be displayed.

The low-order byte contains the value for red, the middle byte contains the value for green, and the high-order byte contains the value for blue.

In script, the RGB method could be implemented as follows:

Function RGB($red, $green, $blue)

 $RGB = ($red + ($green * 256) + ($blue * 65536))

EndFunction

For external applications that require the byte order to be reversed, the following function will provide the same information with the bytes reversed:

Function RevRGB($red, $green, $blue)

 $RevRGB= $blue + ($green * 256) + ($red * 65536)

EndFunction

The following table lists some standard colors and the red, green, and blue values they include:

Black

RGB(0,0,0)

DarkGray
RGB(128,128,128)

Blue

RGB(0,0,128)

LightBlue
RGB(0,0,255)

Green

RGB(0,128,0)

LightGreen
RGB(0,255,0)

Cyan

RGB(0,128,128)
LightCyan
RGB(0,255,255)

Red

RGB(128,0,0)
LightRed
RGB(255,0,0)

Magenta
RGB(128,0,128)
LightMagenta
RGB(255,0,255)

Brown

RGB(128,0,0)

Yellow

RGB(255,255,0)

LightGray
RGB(212,208,200)
White

RGB(255,255,255)

ScaleHeight, ScaleWidth Property

Applies To

Form object, PictureBox control.

Description

Returns or sets the interior dimensions of a form.

Syntax

Object.ScaleHeight [= Number]

Object.ScaleWidth [= Number]

Settings

A numeric expression specifying the interior dimension. ScaleHeight sets or returns the height, in points, of the client (inner) region inside a form. ScaleWidth sets or returns the width, in points, of the client region inside a form.

Screen Object

Properties

Height property, Width property

SelLength Property

Applies To

TextBox control.

Description

Returns or sets the number of characters selected in a text box.

Syntax

Object.SelLength [= Number]

Settings

A numeric expression specifying the number of characters selected. For SelLength and SelStart, the valid range of settings is 0 to the total number of characters in the edit area of a TextBox.

Remarks

The SelLength property is always valid, even when the control does not have focus. Setting SelLength to a value less than zero creates an error. Attempting to set SelLength to a value greater than the number of characters available in a control results in a value equal to the number of characters in the control.

Note Changing the value of the SelStart property cancels any existing selection in the control, places an insertion point in the text, and sets SelLength to zero.

The default value, zero, means that no text is currently selected.

See Also

SelStart property, SelText property.

SelStart Property

Applies To

TextBox control.

Description

Indicates the starting point of selected text, or the insertion point if no text is selected.

Syntax

Object.SelStart [= Number]

Settings

A numeric expression specifying the starting point of text selected. For SelLength and SelStart, the valid range of settings is 0 to the total number of characters in the edit area of a ComboBox or TextBox. The default value is zero.

Remarks

The SelStart property is always valid, even when the control does not have focus. Setting SelStart to a value less than zero creates an error. Attempting to set SelStart to a value greater than the number of characters available in a control results in a value equal to the number of characters in the control.

Changing the value of SelStart cancels any existing selection in the control, places an insertion point in the text, and sets the SelLength property to zero.

See Also

SelLength property, SelText property.

Example

See the SelLength property example.

SelText Property

Applies To

TextBox control.

Description

Returns or sets the selected text of a control.

Syntax

Object.SelText [= String]

Settings

A string expression containing the selected text.

Remarks

If no characters are selected in the edit region of the control, the SelText property returns a zero length string. This property is valid regardless of whether the control has the focus.

See Also

SelLength property, SelStart property.

Example

See the SelLength property example.

SetFocus Method

Applies To

CheckBox control, CommandButton control, ListBox control, OptionButton control, TextBox control, ToggleButton control.

Description

Moves the focus to this instance of an object.

Syntax

Object.SetFocus

Remarks

If setting the focus fails, the focus reverts to the previous object and an error is generated.

By default, setting the focus to a control does not activate the control's window or place it on top of other controls.

See Also

SpecialEffect Property

Will be implemented in Kixforms Build 8.

TabStop Property

Applies To

CheckBox control, CommandButton control, ListBox control, OptionButton control, TextBox control, ToggleButton control.

Description

Indicates whether an object can receive focus when the user tabs to it.

Syntax

Object.TabStop [= Boolean]

Settings

A boolean expression specifying whether this object is a tab stop. The settings for Boolean are:

37 True. Designates the object as a tab stop (default).

38 False. Bypasses the object when the user is tabbing, although the object still holds its place in the actual tab order, as determined by the TabIndex property (TabIndex is not implemented yet).

Text Property

Applies To

ListBox control, TextBox control.

Description

Sets or returns the text in a TextBox. Changes the selected row in a ListBox.

Syntax

Object.Text [= String]

Settings

A string expression specifying the text. The default value is a null string.

Remarks

For a TextBox, any value you assign to the Text property is also assigned to the Value property.

For a ComboBox, you can use Text to update the value of the control. If the value of Text matches an existing list entry, the value of the ListIndex property (the index of the current row) is set to the row that matches Text. If the value of Text does not match a row, ListIndex is set to –1.

For a ListBox, the value of Text must match an existing list entry. Specifying a value that does not match an existing list entry causes an error.

You cannot use Text to change the value of an entry in a ComboBox or ListBox; use the Column or List property for this purpose.

The ForeColor property determines the color of the text.

See Also

ForeColor property, ListIndex property, Value property.

TextBox Control, TextBox Method

Applies To

Form object, Frame control, PictureBox control
Description

A TextBox is the control most commonly used to display information entered by a user.

Syntax

TextBox = Object.TextBox(Text,Left,Top,Width,Height)

Parameters

Text

Optional. A string expression specifying the text that appears in the object to identify or describe it. See Text property.

Left

Optional. A number specifying the distance between the control and the left edge of the form that contains it. The default distance is 0 (zero). See Left,Top properties.

Top

Optional. A number specifying the distance between the control and the top edge of the form that contains it. The default distance is 0 (zero). See Left,Top properties.

Width

Optional. A number specifying the width of an object. If not specified or if set to zero, the width will be automatically calculated based on the size of the caption and the default font size. See Height, Width properties.

Height

Optional. A number specifying the height of an object. If not specified or if set to zero, the height will be automatically calculated based on the size of the caption and the default font size. See Height, Width properties.

Returns

A pointer to a TextBox control.

Remarks

Formatting applied to any piece of text in a TextBox will affect all text in the control. For example, if you change the font or point size of any character in the control, the change will affect all characters in the control.

Properties

BackColor property, Enabled property, FontBold property, FontItalic property, FontName property, FontSize property, FontStrikethru property, FontUnderline property, FontWeight property, ForeColor property, Height property, Left property, MultiLine property, PasswordChar property, SelLength property, SelStart property, SelText property, Tag property, Text property, Top property, Width property

Methods

SetFocus method

Tag Property

Applies To

CheckBox control, CommandButton control, Image control, Label control, ListBox control, OptionButton control, PictureBox control, TextBox control, ToggleButton control, Form object.

Description

Stores additional information about an object.

Syntax

Object.Tag [= String]

Settings

Optional. A string expression identifying the object. The default is a zero-length string (" ").

Remarks

Use the Tag property to assign an identification string to an object without affecting other property settings or attributes. For example, you can use Tag to check the identity of a form or control that is passed as a variable to a procedure.

TakeFocusOnClick

Not implemented yet.

ToggleButton Control, ToggleButton Method

Applies To

Form object, Frame control, PictureBox control
Description

Shows the selection state of an item.

Syntax

ToggleButton = Object.ToggleButton(Caption,Left,Top,Width,Height)

Parameters

Caption

Optional. A string expression specifying the descriptive text that appears on the object to identify or describe it. See Caption property.

Left

Optional. A number specifying the distance between the control and the left edge of the form that contains it. The default distance is 0 (zero). See Left,Top properties.

Top

Optional. A number specifying the distance between the control and the top edge of the form that contains it. The default distance is 0 (zero). See Left,Top properties.

Width

Optional. A number specifying the width of an object. If not specified or if set to zero, the width will be automatically calculated based on the size of the caption and the default font size. See Height, Width properties.

Height

Optional. A number specifying the height of an object. If not specified or if set to zero, the height will be automatically calculated based on the size of the caption and the default font size. See Height, Width properties.

Remarks

Use a ToggleButton to show whether an item is selected. If the user selects the ToggleButton, the current setting is Yes, True, or On; if the user does not select the ToggleButton, the setting is No, False, or Off. A disabled ToggleButton shows a value, but is dimmed and does not allow changes from the user interface.

You can also use a ToggleButton inside a Frame to select one or more of a group of related items. For example, you can create an order form with a list of available items, with a ToggleButton preceding each item. The user can select a particular item by selecting the appropriate ToggleButton.

Unlike OptionButtons, ToggleButtons on a single form or frame are not mutually exclusive.

Properties

Cancel property, Caption property, Controls object, Default property, Enabled property, FontBold property, FontItalic property, FontName property, FontSize property, FontStrikethru property, FontUnderline property, FontWeight property, Height property, Left property, TabStop property, Tag property, Top property, Value property, Width property

Events

OnClick event, OnMouseDown event, OnMouseMove event, OnMouseUp event

Top Property

See Left, Top Properties

Value Property

Applies To

CheckBox control, CommandButton control, ListBox control, OptionButton control, TextBox control, ToggleButton control.

Description

Sets or returns the state or contents of an object.

Syntax

Object.Value [= Variant]

Settings

A variant (number or string) specifying the state, content, or position of a control, as described as follows:

CheckBox – True indicates the box is checked; False (default) indicates the box isn't selected.

CommandButton - Always returns False. Setting the Value property to True in code invokes the button's OnClick event.

OptionButton control - True indicates the button is selected; False (default) indicates the button isn't selected.

ToggleButton control – True indicates the button is pushed; False (default) indicates the button is not pushed.

ListBox – The value of the currently selected row.

TextBox – The text in the edit region.

Visible Property

Applies To

CheckBox control, CommandButton control, Frame control, Image control, Label control, ListBox control, OptionButton control, PictureBox control, TextBox control, ToggleButton control, Form object.

Description

Sets or returns whether an object is visible or hidden.

Syntax

Object.Visible [= Boolean]

Settings

A boolean expression specifying whether the object is visible or hidden. The valid settings for Boolean are:

39 The object is hidden (default for forms)

40 The object is visible (default for all others)

Width Property

See Height, Width properties

1
25

