The software that this package accompanies is subject to the terms of the End-User License Agreement (“EULA”) of Microsoft Ultrasound, and is referred to therein as “Server Software”. YOU AGREE TO BE BOUND BY THE TERMS OF THAT EULA BY INSTALLING, COPYING, OR OTHERWISE USING THIS SOFTWARE. IF YOU DO NOT AGREE, DO NOT INSTALL, COPY, OR USE THE PRODUCT.
Ultrasound Reporting

As an alternative to using the Ultrasound console, when all you need is a quick overview of your systems health, we suggest you create/use a simple web front-end over the Ultrasound DB. This system could meet your reporting needs, without adding a considerable infrastructure to support.
This document outlines the steps you need to take to create such a front end, and reviews the set of provided scripts which could be used as the basis for your reporting needs. The scripts contain hard-coded SQL queries, with wrappers to render results in HTML. While simple, these scripts have already been adopted by some groups to provide a quick overview of FRS health, propagation tests, etc.
The setup requires an IIS server with ASP enabled, network connectivity to the Ultrasound SQL server, and about 30K of disk space.

Installation
Download the archive file ‘UltrasoundWebReporting.zip’ to the machine which hosts IIS. Create a directory, which will store the Ultrasound web reporting virtual directory, and extract the archive there.
Open the IIS management snap-in, and navigate to the IIS computer settings and expand the websites tree. Right click on the web site planned to host Ultrasound reporting and choose: “new/virtual directory”. Complete the wizard:
· Supply an alias name, for example “Ultrasound”

· Point it to the directory where the files were extracted
· Allow read and run scripts permissions

Manually edit each file within this directory with an .ASP extension. Near the beginning of each file modify the SQL server and DB name constants, replacing them with the names for the Ultrasound instance you need reporting on. Here are the lines you are going to edit:
 const serverName = "YourSQLServerName"

 const dbName = "ultrasound"
IIS / SQL Security settings

The last piece left to setup is the security settings for the IIS / SQL server. Different options are possible; each of their own individual advantages and drawbacks. These options are listed below:

1) Use SQL authentication
SQL server security is set to the mixed mode and credentials are hardcoded into connection strings. It is simple, however opens a potential security hole: Someone who has read permissions to ASP files will be able to acquire your SQL server credentials. It is also more difficult to manage when credentials change, since that data is spread across multiple connection strings in multiple files. Connection string will then look like:
 oConnection.Open “Provider=SQLOLEDB;Server=YourSQLServerName;

Trusted_Connection=no;database=ultrasound;uid=YourSecretLogin;pwd= YourSecretPassword;"

Due to the potential security issues, we do not recommend this option.
2) Windows authentication on SQL and anonymous IIS access

This option provides a good balance between simplicity and security. IIS won’t authenticate the web users, and a preconfigured account is used to talk to the SQL server. The account should be created so that it is very restricted in what has access to, in order to limit any security issues.
The actual implementation can be a bit different depending from how IIS and SQL are hosted: on the same box or on different.
a. SQL and IIS on the same box

This is the simplest approach. By default when an anonymous user accesses an IIS server, the request is executed under a special local account IUSR_<MACHINENAME>, where <MACHINENAME> is an actual name of the machine hosting IIS. Since the account is local, it has no permissions to access domain or network resources; you will grant the account read-only access to the Ultrasound database using a script shipped with Ultrasound:
USDBAccess.vbs <SQLServer> <DBName> <machine>\IUSR_<MACHINENAME>
The disadvantage of hosting IIS and SQL server both on the same machine is lack of scalability. Both applications may require a lot of hardware resources depending of usage scenario and it is quite often considered beneficial to host them on separate (but highly connected) machines.
b. SQL and IIS on different boxes
This is one of the best options; it is easy to setup, maintain, and provides a scalable and secure environment.
The difference from the previous case is that when SQL is hosted on different machine than IIS the default local account could not be used for SQL windows authentication. Instead, a real domain account will need to be setup; it is recommended you try to create an account with restricted permissions (ideally only the necessary settings to authentication and authorize with the Ultrasound database).
Security settings for the Ultrasound reporting virtual directory should be set to use this dedicated account. To do this, open the IIS management snapin, expand websites tree, right-click on the Ultrasound reporting virtual directory and pick “Properties”. Go to “Directory Security” tab, and press “Edit” button in the “Anonymous access and authentication control” box. In the popped up “Authentication methods” dialog ensure that “Anonymous access” checkbox is checked and supply credentials of the dedicated domain account we discussed above. See the picture below.

[image: image1.png]
Read-only permissions to the Ultrasound database should be granted to the account by using USDBAccess.vbs script, as in the previous example.
3) Windows authentication for SQL and IIS
That option provides fine-grained secure control for the users accessing web site, but requires additional setup steps. The exact steps are different depending of how IIS and SQL server are hosted: same machine or different ones.
a. SQL and IIS on the same box
First ensure that anonymous access is denied for the Ultrasound reporting virtual directory.

Go to IIS management snapin, expand websites tree, right-click on the Ultrasound reporting virtual directory and pick “Properties”. Go to “Directory Security” tab, and press “Edit” button in the “Anonymous access and authentication control” box. In the popped up “Authentication methods” dialog ensure that “Anonymous access” checkbox is unchecked and “Integrated Windows authentication“is checked.

Grant read-only Ultrasound DB permissions for the users approved to access the Ultrasound reporting web site:

USDBAccess.vbs <SQLServer> <DBName> <Domain>\<UserName>
When users access the Ultrasound web-site IIS will impersonate their credentials for SQL.
Disadvantage of hosting SQL and IIS on the same machine is a lack of scalability as already mentioned above.
b. SQL and IIS on different boxes
That option is trickier, since it requires delegation. One application (IIS) should pass security context to another application on another machine (SQL Server). This is possible starting from Windows 2000 what supports Kerberos delegation.
The knowledge base article (http://support.microsoft.com/default.aspx?scid=kb;en-us;326089) explains how to setup Kerberos delegation for specific account. Other then that it is similar to previous case: disable anonymous authentication for Ultrasound reporting virtual directory and grant read-only permissions to the Ultrasound database.
It is also required from the web browser to support Kerberos as authentication method and Kerberos authentication does not work via proxy servers (http://support.microsoft.com/default.aspx?scid=kb;en-us;321728).

Details
There are three ASP pages and topmost frame with menu for easy switching between pages.

Page 1. Propagation test status.
[image: image2.png]
This page shows status of all replicas monitored by Ultrasound based only on propagation tests. If last test propagated faster than 3 hours then status is green. If test propagated in between of 3 and 24 hours then is yellow. If test is failed to propagate to all replica members or it took more than 24 hours then is considered to be red. Those thresholds: 3 and 24 are hardcoded in the SQL query on this ASP page and can be easily adjusted. The actual query is below:
select

 RS.ReplicaSetFriendlyName,

 PTD.JobState,

 datediff(hour, PTD.PropagationTestEndTime, getutcdate()) as HowLongAgo,

 datediff(hour,
 PTD.PropagationTestStartTime,
 PTD.PropagationTestEndTime) as PropagationTime,

 case

 when
 datediff(hour,
 PTD.PropagationTestStartTime,
 TD.PropagationTestEndTime) <= 3 then 0

 when
 datediff(hour,
 PTD.PropagationTestStartTime,
 PTD.PropagationTestEndTime) <= 24 then 1

 when
 datediff(hour,
 PTD.PropagationTestStartTime,
 PTD.PropagationTestEndTime) > 24 then 2

 else null

 end as Rating

from ReplicaSet RS

 left join

 (

 select

 ReplicaSetID,

 max(PropagationTestDataID) as PropagationTestDataID

 from PropagationTestData

 where PropagationTestEndTime < getutcdate()

 group by ReplicaSetID

) LastPropagationTest
 on RS.ReplicaSetID = LastPropagationTest.ReplicaSetID

 left join PropagationTestData PTD
 on LastPropagationTest.PropagationTestDataID = PTD.PropagationTestDataID

order by Rating desc, PropagationTime desc
Page 2. Metrics.
Second page shows some general metrics about monitored replicas and historical data about propagation tests for 6, 24, 48 and 60 hours.

[image: image3.png]
Here is the query which returns general metrics:

select

 RS.ReplicaSetFriendlyName,

 datediff(minute, UL.StartTime, getutcdate()) as HowLongAgo,

 RSD.NumMembers,

 RSD.NumFiles,

 cast(cast(RSD.TotalFileSize as float) /
 (1024*1024) as decimal(20,2)) as TotalFileSize,

 RSD.NumSharingViolations,

 RSD.NumFilesBacklogged,

 cast(cast(RSD.TotalFileSizeBacklogged as float) /
 (1024*1024) as decimal(20,2)) as TotalFileSizeBacklogged

from ReplicaSet RS

 inner join ReplicaSetData RSD on RS.ReplicaSetID = RSD.ReplicaSetID

 inner join UpdateList UL on RSD.UpdateID = UL.UpdateID

where UL.EndTime >= '9999-01-01'

order by RS.ReplicaSetFriendlyName
And here is the query used for propagation statistic for the last 6 hours.
select

 RS.ReplicaSetFriendlyName,

 MetricSuccess.*,

 MetricFail.*

from ReplicaSet RS

 left join

 (

 select ReplicaSetID,

 count(*) as NumPropagationTests,

 min(datediff(minute,

 PropagationTestStartTime,

 PropagationTestEndTime)) as MinPropagationTime,

 avg(datediff(minute,

 PropagationTestStartTime,

 PropagationTestEndTime)) as AvgPropagationTime,

 max(datediff(minute,

 PropagationTestStartTime,

 PropagationTestEndTime)) as MaxPropagationTime

 from PropagationTestData

 where JobState = 4 and

 PropagationTestEndTime < getutcdate() and

 PropagationTestEndTime >= dateadd(hour, -6, getutcdate())

 group by ReplicaSetID

) as MetricSuccess on RS.ReplicaSetID = MetricSuccess.ReplicaSetID

 left join

 (

 select ReplicaSetID,

 count(*) as NumPropagationTestsFailed

 from PropagationTestData
 where JobState <> 4 and

 PropagationTestEndTime < getutcdate() and

 PropagationTestEndTime >= dateadd(hour, -6, getutcdate())

 group by ReplicaSetID

) as MetricFail on RS.ReplicaSetID = MetricFail.ReplicaSetID

order by AvgPropagationTime desc
It can be easily adjusted for any time range, and actually the same query with adjusted time range is used to show propagation test statistics for other tables on this page.

Note: JobState 4 means succeeded propagation tests. See Ultrasound constants document for complete reference.
Page 3. Ultrasound health.
This page provides Ultrasound point-of-view to the monitored FRS replicas health. There are three tables on this page:
· All replica sets with overall Ultrasound health statistic for each of them, such as number of unhealthy connections and members as well as health of the replica itself.

· Unhealthy members with their connections health summary statistics
· Unhealthy connections

This page can potentially be very long in case of huge and unhealthy system, so it may be a good idea to edit ASP file and disable/remove some of those tables or make queries more restrictive.

The SQL queries executed by this page are the following.
[image: image4.png]
select

 RS.ReplicaSetFriendlyName,

 coalesce(HR.Rating, 0) as Rating,

 case

 when HR.Rating is null
 then datediff(hour, LastHealthUpdates.EndTime, getutcdate())

 else datediff(hour, StartOfLastHealthBlock.StartTime, getutcdate())

 end as HowLong,

 dbo.GetNumMembersWithHealth(RS.ReplicaSetID, 1, getUTCDate())
 as NumYellowMembers,

 dbo.GetNumMembersWithHealth(RS.ReplicaSetID, 2, getUTCDate())
 as NumRedMembers,

 dbo.GetNumReplicaSetInboundConnectionsWithHealth(
 RS.ReplicaSetID,
 1,
 getUTCDate())
 as NumYellowInboundConnections,

 dbo.GetNumReplicaSetOutboundConnectionsWithHealth(
 RS.ReplicaSetID,
 1,
 getUTCDate())
 as NumYellowOutboundConnections,

 dbo.GetNumReplicaSetInboundConnectionsWithHealth(
 RS.ReplicaSetID,
 2,
 getUTCDate())
 as NumRedInboundConnections,

 dbo.GetNumReplicaSetOutboundConnectionsWithHealth(
 RS.ReplicaSetID,
 2,
 getUTCDate())
 as NumRedOutboundConnections

from ReplicaSet RS

 left join HealthRating HR on HR.ObjectType = 1 and

 HR.ObjectID = RS.ReplicaSetID and

 HR.Rating <> 0 and

 HR.EndTime > getUTCDate()

 left join

 (

 select

 HR.ObjectID,

 max(HR.StartTime) as StartTime

 from HealthRating HR

 left join HealthRating HRPrev
 on HR.ObjectType = HRPrev.ObjectType and

 HR.ObjectID = HRPrev.ObjectID and

 HR.StartTime = HRPrev.EndTime and

 HR.Rating = HRPrev.Rating and
 HR.HealthRatingID > HRPrev.HealthRatingID

 where HRPrev.Rating is null and

 HR.ObjectType = 1

 group by HR.ObjectType, HR.ObjectID

) as StartOfLastHealthBlock

 on StartOfLastHealthBlock.ObjectID = RS.ReplicaSetID

 left join

 (

 select

 ObjectID,

 max(EndTime) as EndTime

 from HealthRating

 where ObjectType = 1 and

 EndTime < getUTCDate()

 group by ObjectID

) as LastHealthUpdates

 on LastHealthUpdates.ObjectID = RS.ReplicaSetID

order by HR.Rating desc, ReplicaSetFriendlyName asc
[image: image5.png]
select

 S.ServerName,

 RS.ReplicaSetFriendlyName,

 HR.Rating,

 datediff(hour, StartOfLastHealthBlock.StartTime, getutcdate()) as HowLong,

 coalesce(OCYellow.NumConnections, 0) as NumYellowOutboundConnections,

 coalesce(ICYellow.NumConnections, 0) as NumYellowInboundConnections,

 coalesce(OCRed.NumConnections, 0) as NumRedOutboundConnections,

 coalesce(ICRed.NumConnections, 0) as NumRedInboundConnections

from Member M

 inner join HealthRating HR on HR.ObjectType = 3 and

 HR.ObjectID = M.MemberID and

 HR.Rating <> 0 and
 HR.EndTime > getUTCDate()

 inner join Server S on M.ServerID = S.ServerID

 inner join ReplicaSet RS on M.ReplicaSetID = RS.ReplicaSetID

 inner join

 (

 select

 HR.ObjectID,

 max(HR.StartTime) as StartTime

 from HealthRating HR

 left join HealthRating HRPrev
 on HR.ObjectType = HRPrev.ObjectType and

 HR.ObjectID = HRPrev.ObjectID and

 HR.StartTime = HRPrev.EndTime and

 HR.Rating = HRPrev.Rating and
 HR.HealthRatingID > HRPrev.HealthRatingID

 where HRPrev.Rating is null and

 HR.ObjectType = 3

 group by HR.ObjectType, HR.ObjectID

) as StartOfLastHealthBlock

 on StartOfLastHealthBlock.ObjectID = M.MemberID

 left join dbo.GetCurrentMembersOCNumWithHealth(2) OCRed
 on M.MemberID = OCRed.MemberID

 left join dbo.GetCurrentMembersICNumWithHealth(2) ICRed
 on M.MemberID = ICRed.MemberID

 left join dbo.GetCurrentMembersOCNumWithHealth(1) OCYellow
 on M.MemberID = OCYellow.MemberID

 left join dbo.GetCurrentMembersICNumWithHealth(1) ICYellow
 on M.MemberID = ICYellow.MemberID

order by HR.Rating desc, ServerName asc, ReplicaSetFriendlyName asc
[image: image6.png]
select

 C.ConnectionFriendlyName,

 UnhealthyConnections.Rating,

 datediff(hour, UnhealthyConnections.StartTime, getUTCDate()) as HowLong,

 RS.ReplicaSetFriendlyName,

 UnhealthyConnections.Direction

from

 (

 select

 IC.GlobalConnectionID,

 IC.ReplicaSetID,

 HR.Rating,

 StartOfLastHealthBlock.StartTime,

 'inbound' as Direction

 from InboundConnection IC

 inner join HealthRating HR
 on HR.ObjectID = IC.InboundConnectionID and

 HR.ObjectType = 4 and

 getUTCDate() < HR.EndTime

 inner join

 (

 select HR.ObjectID,

 max(HR.StartTime) as StartTime

 from HealthRating HR

 left join HealthRating HRPrev
 on HR.ObjectType = HRPrev.ObjectType and

 HR.ObjectID = HRPrev.ObjectID and

 HR.StartTime = HRPrev.EndTime and

 HR.Rating = HRPrev.Rating and
 HR.HealthRatingID > HRPrev.HealthRatingID

 where HRPrev.Rating is null and

 HR.ObjectType = 4

 group by HR.ObjectType, HR.ObjectID

) as StartOfLastHealthBlock

 on StartOfLastHealthBlock.ObjectID = IC.InboundConnectionID

 union all

 select

 OC.GlobalConnectionID,

 OC.ReplicaSetID,

 HR.Rating,

 StartOfLastHealthBlock.StartTime,

 'outbound' as Direction

 from OutboundConnection OC

 inner join HealthRating HR
 on HR.ObjectID = OC.OutboundConnectionID and

 HR.ObjectType = 5 and

 getUTCDate() < HR.EndTime

 inner join

 (

 select

 HR.ObjectID,

 max(HR.StartTime) as StartTime

 from HealthRating HR

 left join HealthRating HRPrev
 on HR.ObjectType = HRPrev.ObjectType and

 HR.ObjectID = HRPrev.ObjectID and

 HR.StartTime = HRPrev.EndTime and

 HR.Rating = HRPrev.Rating and
 HR.HealthRatingID > HRPrev.HealthRatingID

 where HRPrev.Rating is null and

 HR.ObjectType = 5

 group by HR.ObjectType, HR.ObjectID

) as StartOfLastHealthBlock

 on StartOfLastHealthBlock.ObjectID = OC.OutboundConnectionID

) as UnhealthyConnections

 inner join ReplicaSet RS
 on UnhealthyConnections.ReplicaSetID = RS.ReplicaSetID

 left join Connection C
 on UnhealthyConnections.GlobalConnectionID = C.GlobalConnectionID

order by Rating desc, ConnectionFriendlyName asc
Look to the Ultrasound schema documentation for description of the fields and constants used in those queries.
References
There are few things which may help understand this document:

1. Ultrasound schema design

a. Ultrasound schema reference (schema.csv)
b. Ultrasound constants definition (constants.xml)
2. A SQL book

3. An ASP book

4. MSDN
